

Kackertstraße 10 52072 Aachen

www.huping.de

Tel. 02 41.44 50 3-0 Fax 02 41.44 50 3-29 Seite:

Datum: 21.11.2008

1

Projekt-Nr.:

Projekt: BGW Doppelwellenanker

Bauteil: Schrägzugbewehrung

Position:

Statischer Nachweis der Schrägzugbewehrung für BGW Doppelwellenanker

1. Grundlagen

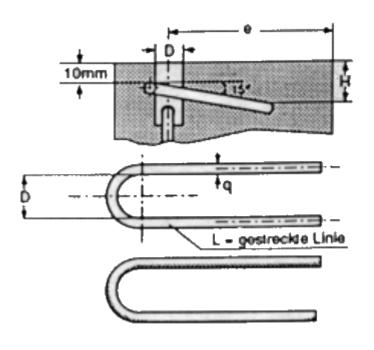
Berechnungsgrundlagen

DIN 1045-1 Stahlbetonbau

BGR 106 Sicherheitsregeln für Transportanker von Betonfertigteilen

Material

Betonstahl BSt 500/550


Beton C12/15

System

Die Doppelwellenanker werden als Verankerungselement mit Innengewinde in tragenden Betonfertigteilen aus C12/15 eingesetzt. Der Einbau erfolgt orthogonal zur Betonoberfläche.

Doppelwellenanker können mit zentrischen Zuglasten, Schrägzug- und Querzuglasten beansprucht werden.

Bei Schrägzugbeanspruchung (β≤45°) sind gemäß Skizze um 15° zur Oberfläche geneigte Bewehrungsschlaufen einzubauen.

Kackertstraße 10 52072 Aachen

www.huping.de

Tel. 02 41.44 50 3-0 Fax 02 41.44 50 3-29 Seite:

Datum:

Projekt-Nr.:

21.11.2008

2

Projekt: BGW Doppelwellenanker

Bauteil: Schrägzugbewehrung

Position:

<u>Variablen</u>

A_s Querschnittsfläche der Schrägzugbewehrung (2 Schenkel)

b_A Breite des Aussparungskörpers

d_{br}, D Durchmesser der Doppelwellenankeröse

d_s, q Durchmesser der Schrägzugbewehrung

H Randabstand der Schrägzugbewehrung am Schlaufenende

l_b Verbundlänge des Bewehrungsschenkels

l_s Länge eines Bewehrungsschenkels

l Gesamtlänge der Schrägzugbewehrung (Abwicklung)

f_{b,k} charakteristischer Wert der Verbundspannung

 $f_{b.zul}$ Wert der zulässigen Verbundspannung

f_{ctk,0.05} charakteristischer Wert der Betonzugfestigkeit

 f_{sk} charakteristischer Wert der Streckgrenze von Betonstahl

 $f_{s,zul}$ Wert der zulässigen Betonstahlspannung

β Winkel der Schrägzugkraft zur Vertikalen (Ankerachse)

γ Globalsicherheitsbeiwert

zul S zulässige Schrägzugkraft (β≤45°)

Z_s Kraft in Richtung der Schrägzugbewehrung

<u>Sicherheitskonzept</u>

Auf Grundlage von BGR 106 wird das Globalsicherheitskonzept angewendet, das zwischen den charakteristischen Materialkennwerten und den zulässigen Größen einen globalen Sicherheitsabstand vorsieht.

Im Fall des Widerstands gegen Betonversagen inkl. Versagen der Tragfähigkeit des Bewehrungsquerschnitts und der Verankerung beträgt der globale Sicherheitsbeiwert

y = 2,50

H+P Ingenieure GmbH & Co. KG Kackertstraße 10

52072 Aachen

Tel. 02 41.44 50 3-0 Fax 02 41.44 50 3-29

www.huping.de

Seite: 3

Datum:

Projekt-Nr.:

21.11.2008

Projekt: BGW Doppelwellenanker

Bauteil: Schrägzugbewehrung

Position:

<u>Materialkenngrößen</u>

Dem Tragsicherheitsnachweis liegen die folgenden zulässigen Materialkenngrößen zu Grunde:

Zulässige Betonstahlspannung für Betonstahl BSt 500:

$$\rm f_{s,zul} = f_{yk} \, / \, \gamma = 500 \, / \, 2,5 = 200 \, N/mm^2$$

Zulässige Verbundspannung für Beton C12/15:

$$\begin{split} f_{b,zul} &= f_{bk} \, / \, \gamma = 2,\!25 \; f_{ctk,0.05} \, / \, 2,\!5 = 2,\!25 \cdot 1,\!1 \, / \, 2,\!5 \\ &= 0,\!99 \; N/mm^2 \end{split}$$

2. Ankerkräfte

Im Folgenden werden die maximalen horizontalen Kraftkomponenten Z_s , für die die Schrägzugbewehrung bemessen wird, aus den zulässigen Schrägzuglasten der einzelnen Ankergrößen unter Annahme der größten Schrägzugneigung (β =45°) berechnet:

$$Z_s = zul S \cdot sin 45^\circ$$

Die Stahlzugkräfte betragen:

Anker	zul S kN	Z _s kN	
Rd 12	5,0	3,5	
Rd 14	8,0	5,7	
Rd 16	12,0	8,5	
Rd 18	16,0	11,3	
Rd 20	20,0	14,1	
Rd 24	25,0	17,7	
Rd 30	40,0	28,3	
Rd 36	63,0	44,5	
Rd 42	80,0	56,6	
Rd 52	125,0	88,4	

H+P Ingenieure GmbH & Co. KG Kackertstraße 10

Tel. 02 41.44 50 3-0 Fax 02 41.44 50 3-29

www.huping.de

Seite: 4

Datum: 21.11.2008

Projekt-Nr.:

Projekt: BGW Doppelwellenanker

52072 Aachen

Bauteil: Schrägzugbewehrung

Position:

3. Nachweis der Tragfähigkeit

Tragfähigkeit des Stahlquerschnitts

Die Tragfähigkeit beider Schenkel der Bewehrungsschlaufe beträgt:

$$zul~Z_S = A_S \cdot f_{s,zul} = 2~d_S^{~2} \cdot \pi \cdot f_{s,zul} \hspace{1.5cm} mit~f_{s,zul} = 200~N/mm^2$$

In der Tabelle werden die Tragfähigkeiten der gewählten Bewehrung (Durchmesser d_s) der Belastung gegenüber gestellt und ein Ausnutzungsgrad η wird angegeben:

Anker	Z _s kN	d _s mm	vorh As cm²	zul Z _s kN	η
Rd 12	3,5	6	0,57	11,3	31%
Rd 14	5,7	6	0,57	11,3	50%
Rd 16	8,5	8	1,01	20,1	42%
Rd 18	11,3	8	1,01	20,1	56%
Rd 20	14,1	8	1,01	20,1	70%
Rd 24	17,7	10	1,57	31,4	56%
Rd 30	28,3	12	2,26	45,2	63%
Rd 36	44,5	14	3,08	61,6	72%
Rd 42	56,6	16	4,02	80,4	70%
Rd 52	88,4	20	6,28	125,7	70%

Kackertstraße 10 52072 Aachen

www.huping.de

Tel. 02 41.44 50 3-0 Fax 02 41.44 50 3-29 Seite:

5

Datum:

Projekt-Nr.:

21.11.2008

Projekt: BGW Doppelwellenanker

Bauteil: Schrä

Schrägzugbewehrung

Position:

Verbundtragfähigkeit

Die gewählte Bewehrung ist im Beton für die maximale Belastung Z_s zu verankern. Die Verankerungslänge I_b beginnt am Ende des Aussparungskörpers.

Die erforderliche Verankerungslänge I_b der Bewehrungsschenkel beträgt:

$$erf \ l_b = Z_S \, / \, (f_{b,zul} \, \cdot 2 \cdot d_S \cdot \pi) \hspace{1cm} mit \ f_{b,zul} = 0,99 \ N/mm^2$$

Anker	Z _s kN	d _s	erf I _b
		mm	mm
Rd 12	3,5	6	95
Rd 14	5,7	6	152
Rd 16	8,5	8	171
Rd 18	11,3	8	227
Rd 20	14,1	8	284
Rd 24	17,7	10	284
Rd 30	28,3	12	379
Rd 36	44,5	14	512
Rd 42	56,6	16	568
Rd 52	88,4	20	710

Kackertstraße 10 52072 Aachen

www.huping.de

Tel. 02 41.44 50 3-0 Fax 02 41.44 50 3-29 Seite:

Datum:

Projekt-Nr.:

21.11.2008

6

Projekt: BGW Doppelwellenanker

Bauteil:

Schrägzugbewehrung

Position:

4. Schrägzugbewehrung

Die erforderliche Gesamtlänge I der Schrägzugbewehrung (Abwicklung) besteht aus der doppelten Verankerungslänge I_b sowie der Stablänge, die um den Doppelwellenanker zu führen ist:

$$I = 2 \operatorname{erf} I_b + \pi d_{br}$$

Die Schenkellänge I_s ergibt sich wie folgt:

$$l_s = erf l_b + d_{br} / 2$$

Die Höhe H zur Betonoberkante am Ende der Bewehrungsschlaufe wird wie folgt berechnet:

$$H = 10 + I_s \cdot \sin 15^\circ \text{ [mm]}$$

Anker	d _s	d _{br}	I	I _s	Н
	mm	mm	mm	mm	mm
Rd 12	6	16,5	250	110	38
Rd 14	6	20	370	170	54
Rd 16	8	22	420	190	59
Rd 18	8	25	540	240	72
Rd 20	8	27,7	660	300	88
Rd 24	10	31	670	300	88
Rd 30	12	41	890	400	114
Rd 36	14	48	1180	540	150
Rd 42	16	54	1310	600	165
Rd 52	20	70	1650	750	204