Hinsichtlich Standsicherheit geprüft

Nr.

Siehe Prüfbericht

S-N 0 8 0 2 3 4

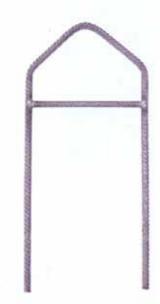
vom 0 5. Nov. 08

LGA

Prüfamt für Standsicherheit

Nürnberg, den Der Bearbeiter 0 5. Nov. 08

Der Leiter



H+P Ingenieure GmbH & Co. KG Kackertstr. 10 52072 Aachen

Tel. 02 41.44 50 30 Fax 02 41.44 50 329 www.huping.de

Prof. Dr.-ing. Josef Hegger Dr.-ing. Naceur Kerkeni Dr.-ing. Wolfgang Roeser

TYPENBERECHNUNG BGW DOPPELWANDANKER Ø12 UND Ø14

Auftraggeber:

BGW-Bohr GmbH

Kastanienstr. 100

97854 Steinfeld

BGW

Aufsteller:

Dr.-Ing. N. Kerkeni

Dipl.-Ing. C. Bergholz

Projekt:

TP07-21-1

Datum:

31.10.2008

Diese Typenberechnung umfasst 61 Seiten und 1 Anlage (8 Seifen)

INHALTSVERZEICHNIS

1	VE	RWENDETE UNTERLAGEN			4
2	FC	RMELZEICHEN UND ABKÜRZUNGEN			5
3	GE	GENSTAND DER TYPENBERECHNUNG			8
4	DC	PPELWANDANKER			9
	4.1	Allgemeines			9
	4.2	Konstruktive Anforderungen			10
	4.3	Ankertypen und Ankergrössen			13
	4.4	Geometrie			14
	4.5	Material der Doppelwandanker			16
	4.6	Rückhängebewehrung für Lastfall Querzug			17
5	SI	CHERHEITSKONZEPT			18
	5.1	Grundlage			18
	5.2	Einwirkungen			18
		Widerstände			18
	5.4	Sicherheitsbeiwerte			18
	5.5	Grenzwerte			19
6	LA	STANNAHMEN			20
	6.1	Allgemeines			20
	6.2	Eigenlasten			20
	6.3	Schalungshaftung			20
	6.4	Hublastbeiwerte			21
7	EL	EMENTTRAGFÄHIGKEITEN			22
	7.1	Allgemeines			22
	7.2	Stahltragfähigkeiten			22
	7.3	Widerstand gegen Stabilitätsversagen			23
	7.4	Tragfähigkeit der Schweissnähte			25
	7.5	Verbundtragfähigkeit			27
	7.6	Tragfähigkeit auf Horizontallasten			29
	7.7	Tragfähigkeit auf Querlasten			31
	7.7	1.1 Unverstärkte Doppelwandanker			31
	7.7	7.2 Doppelwandanker mit Rückhängebewehrung	- 3	1 1	32

8 SC	HNITTGRÖSSEN	34
8.1	Allgemeines	34
8.2	Beanspruchung durch ein Seilgehänge	34
8.3	Lastfall Zentrischer Zug	37
8.4	Lastfall Schrägzug	39
8.5	Lastfall Querzug	40
9 AN	KERTRAGFÄHIGKEITEN	42
9.1	Allgemeines	42
9.2	Tragfähigkeit auf Zentrische Zuglasten	42
9.3	Tragfähigkeit auf Schrägzuglasten	45
9.4	Tragfähigkeit auf Querzuglasten	48
10 BEI	RECHNUNGSBEISPIEL	51
10.1	Allgemeines	51
10.2	Eingangswerte	51
10.3	Elementtragfähigkeiten	51
10.3	3.1 Stahltragfähigkeit	51
10.	3.2 Widerstand gegen Stabilitätsversagen	51
10.	 Tragfähigkeit der Schweißnähte 	52
10.	3.4 Verbundtragfähigkeit	52
10.	 Tragfähigkeit auf Horizontallasten 	52
10.	3.6 Tragfähigkeit auf Querlasten	52
10.4	Ankertragfähigkeiten	53
10.	4.1 Tragfähigkeit auf zentrische Zuglasten	53
10.	4.2 Tragfähigkeit auf Schrägzuglasten	53
10.	4.3 Tragfähigkeit auf Querzuglasten	54
11 AU	SWERTUNG DER AUSZIEHVERSUCHE	55
11.1	Allgemeines	55
11.	1.1 Materialfestigkeiten	55
11.	1.2 Versuchslasten	56
11.	1.3 Auswertung	56
11.2	Zentrische Zugversuche	57
11.3	Schrägzugversuche	58
11.4	Querzugversuche unverstärkte Anker	59
11.5	Querzugversuche Anker mit Rückhängebewehrung	60

ANLAGE A TRAGFÄHIGKEITSTABELLEN

1 VERWENDETE UNTERLAGEN

- [1] Normenausschuss Bauwesen (NABau) im DIN Deutsches Institut f
 ür Normung e.V.: DIN 1045-1 Tragwerke aus Beton, Stahlbeton und Spannbeton – Teil 1: Bemessung und Konstruktion. S. 148 (einschl. Berichtigung 2). Stand: Juni 2006.
- [2] Deutscher Ausschuss für Stahlbeton (DAfStb): Heft 240 –Hilfsmittel zur Berechnung der Schnittgrößen und Formänderungen von Stahlbetontragwerken. S. 85. Juli 1991
- [3] Deutscher Ausschuss f
 ür Stahlbeton (DAfStb): Heft 525 Teil 1: Erl
 äuterungen zu DIN 1045-1. September 2003
- [4] Normenausschuss Bauwesen (NABau) im DIN Deutsches Institut f
 ür Normung e.V.: DIN 4099-1 Schweißen von Betonstahl – Teil 1: Ausf
 ührung. S.16. Stand: August 2003.
- [5] Normenausschuss Bauwesen (NABau) im DIN Deutsches Institut f
 ür Normung e.V.: DIN 15018-1 Krane – Teil 1: Grundsätze f
 ür Stahltragwerke, Berechnung S. 38. Stand: November 1984
- [6] Normenausschuss Bauwesen (NABau) im DIN Deutsches Institut für Normung e.V.: DIN 18800-1/A1 Stahlbauten – Teil 1: Bemessung und Konstruktion Änderung A1. S. 1. Stand: Februar 1996
- [7] Normenausschuss Bauwesen (NABau) im DIN Deutsches Institut f
 ür Normung e.V.: DIN 18800-2: DIN 18800-1 Stahlbauten – Teil 2: Stabilitätsf
 älle, Knicken von St
 äben und Tragwerken. S. 44. Stand: November 1990
- [8] Berufsgenossenschaft der Bauwirtschaft (BG Bau): Berufsgenossenschaftliche Regeln für Sicherheit und Gesundheit bei der Arbeit (BGR): BGR 106 – Sicherheitsregeln für Transportanker und -systeme von Betonfertigteilen. April 1992
- [9] Europäische Organisation für Technische Zulassungen (EOTA): ETAG 001 Metal anchors for use in concrete – Annex C: Design methods for anchorages. S. 30. Stand: November 2006

2 FORMELZEICHEN UND ABKÜRZUNGEN

Bezeichnungen, die nicht in der Liste aufgeführt sind, werden im laufenden Text erklärt.

Geometrische Größen

а	Achsabstand des Ankers A zum Schwerpunkt der Doppelwand
az	Zwischenabstand der Doppelwandanker
a _R	Randabstand der Doppelwandanker
a _{s,min}	Mindestnetzbewehrung
A	haftende Schalfläche
A _b	Verbundfläche eines Ankerstabes
Ac	wirksame Betonfläche der Spaltzugspannungen
A_s	Querschnittsfläche Ankerstab
A _w	Schweißtnahtfläche
b	Achsabstand des Ankers B zum Schwerpunkt der Doppelwand
Caußen	Betonüberdeckung der Ankerschenkel zur Schalenaußenseite
Cinnen	Betonüberdeckung der Ankerschenkel zur Schaleninnenseite
C _{min}	Mindestbetondeckung
C _{nom}	Nennmaß der Betondeckung
C _{nom} 0	Grundmaß der Betondeckung: c _{nom} 0 = 20 mm
d	Wanddicke
d _q	Stabdurchmesser der Querstrebe
d_s , Ø	Stabdurchmesser der Ankerschenkel
d_{wq}	Bewehrungsstabdurchmesser der Wandquerbewehrung
fa	Faktor der Quertragfähigkeit (unverstärkte Anker)
fan	Faktor der Quertragfähigkeit (Anker mit Rückhängebewehrung)
h	Breite der Doppelwandanker (Außenmaß)
h _c	Verteilungshöhe der Teilflächenpressung
Н	Höhe der Wandscheibe
I _q	Trägheitsmoment der Querstrebe
i	Trägheitsradius der Querstrebe
k	Beiwert zum Abminderungsfaktor κ
K _c	Koeffizient für Horizontallasttragfähigkeit
1	Länge des Doppelwandankers
I _A	Länge des Seils am Anker A
l _b	Verbundlänge des Ankerschenkels (Querstrebe bis Stabende)
I _{b,maßg}	maßgebende Verbundlänge des Ankerschenkels aller Größen
I _B	Länge des Seils am Anker B
I _c	Verteilungslänge der Teilflächenpressung am Ankerschenkel

ges	Gesamtlänge des Ankerstabs
l _v	Versatzlänge (Querstrebenachse bis Zugstrebenende)
lz	Länge der Zugstrebe
L	Länge der Wandscheibe
n	Anzahl der tragenden Doppelwandanker
S	Dicke der Fertigteil-Betonschalen
S _K	Knicklänge der Querstreben
Üq	Überstand der Querstrebe
V	Volumen der Betonschalen
α [°, rad]	Neigungswinkel des Lastangriffs zur Ankerachse (i. A. zur Vertikalen)
α	Parameter zur Berechnung des Abminderungsfaktors κ
α_{b}	Reduktionsfaktor der Verbundspannungen
β [°, rad]	Neigungswinkel der Zugstreben zur Ankerachse (i. A. zur Vertikalen)
β	Knicklängenbeiwert
γ	Spreizwinkel zwischen den Gehängesträngen
κ	Abminderungsfaktor für das Biegeknicken
$\lambda_{\rm a}$	Bezugsschlankheitsgrad
λ_k	Schlankheitsgrad
$\underline{\lambda}_k$	Bezogener Schlankheitsgrad

Baustoffkenngrößen

A_{Rk}	Verbundtragfähigkeit
B _{Rk}	Querzugtragfähigkeit am unverstärkten System
B _{RK,R}	Querzugtragfähigkeit am mit Rückhängebewehrung verstärkten
	System
C_{Rk}	Tragfähigkeit der Betonschalen auf Horizontallasten
$D_{Rk,k}$	Widerstand der Querstrebe gegen Stabilitätsversagen (Knicken)
D _{Rk,w}	Tragfähigkeit der Schweißverbindung der Querstrebe
E	Elastizitätsmodul von Betonstahl
f _{bk}	charakteristischer Wert der Verbundspannung
f_{ck}	charakteristischer Wert der Zylinderdruckfestigkeit des Betons
f _{ck,cube}	charakteristischer Wert der Betonwürfeldruckfestigkeit
f _{c,150}	Druckfestigkeit des Betons an 150 mm Würfeln (Messwert)
f _{ctk;0.05}	charakteristischer Wert des 5%-Quantils der Betonzugfestigkeit
f _{ctk*}	erhöhter Quantilwert der Betonzugfestigkeit f _{ctk*} =0,85 f _{ctm}
f _{ctm}	Mittelwert der Betonzugfestigkeit
f _{ct,sp}	Betonspaltzugfestigkeit (Messwert)
$f_{ct,z}$	zentrische Betonzugfestigkeit (aus f _{ct,Sp} abgeleiteter Messwert)
f_{yk}	charakteristischer Wert der Streckgrenze des Betonstahls
Z_{Rk}	Tragfähigkeit des Stahlquerschnitts

Kraftgrößen

A	Ankerschenkelkraft
В	Betonreaktionskraft im Lastfall Querzug
С	Betonreaktionskraft im Lastfall Schrägzug
D	Normalkraft der Querstrebe (Druckstrebe)
f	Hublastbeiwert
F	vertikale Gehängekraft, Versuchslast
F _H	Horizontalkomponente der Kraft F
Fs	Spaltzugkraft
F _v	Vertikalkomponente der Kraft F
G	Eigengewicht der Doppelwand
H	Horizontalkraft (Schrägzugkomponente) orthogonal zur Ankerebene
HA	Schalungshaftkraft
M	Moment
N	vertikale Ankerlast
zul N	zulässige zentrische Ankerzugkraft
Q	Querlast (Lastfall "Aufheben" parallel zur Ankerebene)
zul Q	zulässige Querlast bei Ankerquerausbruch (unverstärkte Anker)
zul Q _R	zulässige Querlast bei Ankerquerausbruch (Anker mit Rückhänge-
	bewehrung)
S	Schrägzugkraft im Gehänge
zul S	zulässige Anker-Schrägzugkraft
Z	Kraft der Zugstrebe
zul Z	zulässige zentrische Ankerzugkraft (nur in Tragfähigkeitstabellen)

Indizes

Y

d Bemessungswert

ges gesamt

k Charakteristischer Wert

maßg maßgebend max Maximum min Minimum mind Mindestwert pl plastisch

red [um den Hublastbeiwert f] reduzierter zulässiger Wert

Globalsicherheitsbeiwert

zul zulässiger Wert

3 GEGENSTAND DER TYPENBERECHNUNG

In der vorliegenden Typenberechnung erfolgt eine Berechnung und Bemessung der BGW-Doppelwandanker Typ 2 und Typ 3 aus geripptem Betonstahl für die Durchmesser d_s =12 mm und 14 mm.

Die in den Ausziehversuchen untersuchten Doppelwandanker vom Typ 2 ungerippt werden in diesem Dokument nicht berücksichtigt.

Es werden die Tragfähigkeiten und zulässigen Belastungen auf zentrischer Zug, Schrägzug und Querzug ("Aufrichten" der Doppelwände) bei Einhaltung der konstruktiven Randbedingungen berechnet und zusammengestellt.

Der Nachweis der Seile, bzw. des Gehänges und der Anschlagmittel sind nicht Gegenstand dieser Typenberechnung.

4 DOPPELWANDANKER

4.1 ALLGEMEINES

Doppelwändenker sind spezielle Transportanker für zweischalige Wandhalbfertigteile (Doppelwände). Die Schenkel der Doppelwandanker werden mit den Bewehrungskörben der Betonschalen verbunden und in den Beton eingegossen. Die Doppelwandanker dienen nach dem Erhärten des Betons sowohl zum Aufstellen als auch zum Transportieren der Wandelemente. Das Anheben der Wandelemente erfolgt mittels eines schrägen Seilgehänges oder eines Traversengehänges. Die Anschlagmittel der Seile sind im Dreieck der Doppelwandanker einzuhängen. Nach der Montage der Doppelwände wird der Zwischenraum zwischen den Betonschalen mit Ortbeton vergossen. Dabei verbleiben die Doppelwandanker in den Wandelementen.

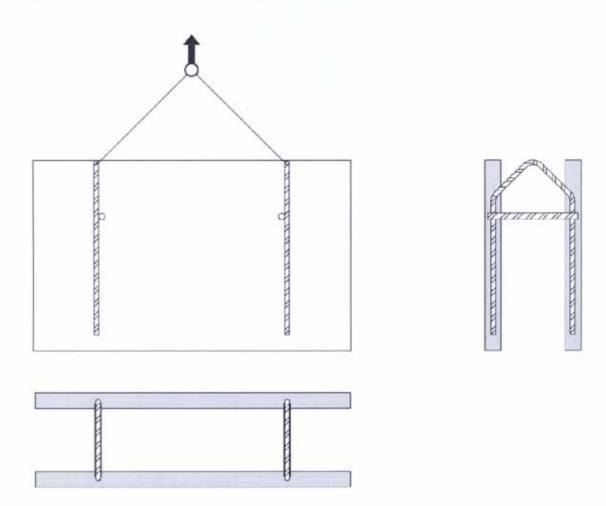


Bild 1: Querschnitt eines Doppelwandelements mit eingebauten Doppelwandankern und Seilgehänge

4.2 KONSTRUKTIVE ANFORDERUNGEN

Die Verwendung der Doppelwandanker unter Ausnutzung der in dieser Typenberechnung angegebenen Tragfähigkeiten unterliegt den folgenden konstruktiven Mindestanforderungen.

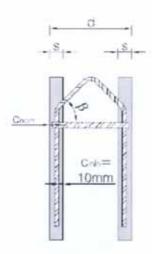


Bild 2: Querschnitt eines Doppelwandelements mit eingebautem Doppelwandanker Typ 3

Die Bemessung der Doppelwandanker erfolgt für Wandstärken 170 mm≤d≤400 mm.

Die Ankerschenkelstäbe sind mit einer Betonüberdeckung zur Innenseite der Betonschalen c_{innen} einzubauen, die der Mindestbetondeckung c_{min}=10 mm entspricht.

Die Betonüberdeckung der Schenkelstäbe zur Außenseite der Wand beträgt $c_{\text{außen}}$. Dieser Wert wird von der erforderliche Betondeckung c_{nom} bestimmt. Bei Ankertyp 2 ist das erforderliche Betondeckungsmaß zu der außen liegenden Querbewehrung der Wand (Stabdurchmesser d_{Wq}) einzuhalten, bei Ankertyp 3 stirnseitig zu der überstehenden Querstrebe.

Die Mindestdicke der Betonschalen ist abhängig vom Ankertyp und von den erforderlichen Betonüberdeckungen und muss in Abhängigkeit vom Ankertyp folgenden Anforderungen genügen:

Ankertyp 2

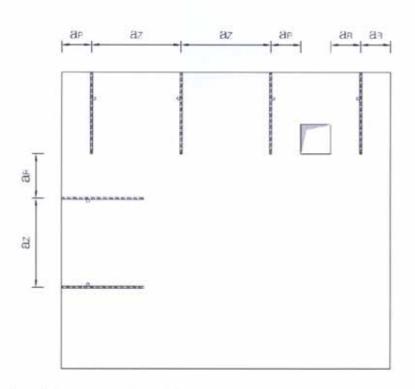
$$s = c_{\text{außen}} + d_s + c_{\text{innen}} \ge c_{\text{nom}} + d_{\text{Wq}} + d_{\text{S}} + c_{\text{min}}$$
 (1)

Ankertyp 3

$$s = c_{außen} + d_s + c_{innen} \ge c_{nom} + \ddot{u}_q + d_S + c_{min}$$
 (2)

Eine Auswertung der Mindestschalendicken für Ankertyp 2 mit d_{wq} =6,0 mm ist Tabelle 1 zu entnehmen.

Tabelle 1: Mindestdicke der Betonschalen für Ankertyp 2, Ø12 und Ø14


Betondeckung	c _{nom} =15 mm	c _{nom} =20 mm	c _{nom} =25 mm	c _{nom} =30 mm	c _{nom} =35 mm
Schalendicke s	45 mm	50 mm	55 mm	60 mm	65 mm

Eine Zusammenstellung der Mindestschalendicken für Ankertyp 3 mit \ddot{u}_q =10mm erfolgt in Tabelle 2.

Tabelle 2: Mindestdicke der Betonschalen für Ankertyp 3, Ø12 und Ø14

Betondeckung	c _{nom} =15 mm	c _{nom} =20 mm	c _{nom} =25 mm	c _{nom} =30 mm	c _{nom} =35 mm
Schalendicke s	50 mm	55 mm	60 mm	65 mm	70 mm

Die Mindestfestigkeitsklasse des Betons zum Zeitpunkt des Transports ist C12/15. Die Schalen sind mit einem Mindestbewehrungsquerschnitt von $a_{s,min}=1,40\,$ cm²/m (Ø6/20) kreuzweise einlagig in Schalenmitte zu bewehren.

 $az \ge 50cm$ $ax \ge 20cm$

Bild 3: Doppelwandankersystem mit den Mindestzwischenabständen az und Mindestrandabständen an.

Der Einbau der Doppelwandanker muss bündig mit der Oberkante der Betonschalen erfolgen. Die Ankerschenkel sind mit der Bewehrung der Betonschalen zu verbinden (verrödeln). Die Anordnung der Anker ist nicht an die Lage der Gitterträger gebunden und kann frei gewählt werden.

Bei Ankertyp 3 ist darauf zu achten, dass die aufgeschweißte Querstrebe stets in Richtung der geplanten Schrägzugbelastung zeigt.

Die Doppelwandanker sind mit einem Mindestzwischenabstand von a_z =50 cm zu beanspruchten benachbarten Ankern einzubauen. Es ist der Mindestrandabstand a_R =20 cm der Ankerachse zu den Außenkanten der Schalen und zu den Rändern von Aussparungen einzuhalten. Dieser Mindestabstand gilt auch für benachbarte Anker, die nicht gleichzeitig beansprucht werden. Die Anker sind so anzuordnen, dass das Wandelement im Schwerpunkt gehoben werden kann. Bei Wandlängen von 60 cm und weniger ist nur ein einzige Anker zu verwenden. Es dürfen keine Ankerpaare eingesetzt werden.

Bei Anordnung von mehr als zwei Doppelwandankern ist für den Transport ein Ausgleichsgehänge erforderlich, um eine gleichmäßige Verteilung der Lasten zu erzielen.

Bei Schrägzugbeanspruchung ist der Neigungswinkel zur Ankerachse (Vertikale) auf α =45° begrenzt.

4.3 ANKERTYPEN UND ANKERGRÖSSEN

Die in der vorliegenden Typenberechnung untersuchten Doppelwandanker gliedern sich in zwei verschiedene Ankertypen:

- Typ 2 gr mit geripptem Betonstahl und eingeschweißter Querstrebe
- Typ 3 gr mit geripptem Betonstahl und aufgeschweißter Querstrebe

Die Typen unterscheiden sich darin, dass bei Typ 2 eine Querstrebe vom Stabdurchmesser der Ankerschenkel eingeschweißt wird, während bei Typ 3 unabhängig vom Ankerstabdurchmesser ein Querstab Ø20 seitlich auf die Ankerschenkel aufgeschweißt wird. Die in der vorliegenden Typenberechnung betrachteten Ankertypen und -größen sind in Tabelle 3 dargestellt.

Tabelle 3: Doppelwandankertypen und -größen der Typenberechnung

Ankertyp	Typ 2 gr	Typ 3 gr
Querstrebe	eingeschweißt	aufgeschweißt
d _q	$= d_S$	Ø 20
nkerschenkel	gerippt	gerippt
d _s	Ø12 und Ø 14	Ø12 und Ø 14

4.4 GEOMETRIE

Die Abmessungen der Doppelwandanker Typ 2 und Typ 3 sind mit Ausnahme der Querstrebenlänge $I_{\rm q}$ identisch. In Bild 4 sind die verwendeten geometrischen Größen dargestellt.

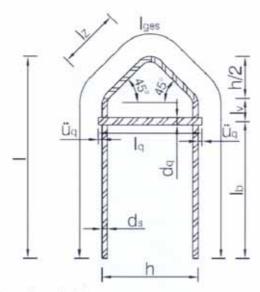


Bild 4: Abmessungen der Doppelwandanker

Die Schenkel und Zugstreben (Diagonalen des "Dreiecks") der Doppelwandanker werden aus einem Betonstabstahl der Gesamtlänge $I_{ges}=1200$ mm (für Ankerbreiten 114 mm \leq h \leq 245 mm) bzw. $I_{ges}=1500$ mm (für 246 mm \leq h \leq 358 mm) hergestellt.

Der Neigungswinkel der Zugstreben zur Ankerachse – i.d.R. die Vertikale – beträgt im Einbauzustand β =45°. Die Versatzlänge zwischen dem Zugstrebenende und der Achse der Querstrebe (Druckstrebe) ist durch Schweißanforderungen bedingt (vgl. Abs. 4.5) und beträgt für alle Ankerabmessungen I_v =60 mm.

Die Breite h der Doppelwandanker variiert in Abhängigkeit vom Ankertyp, der Wanddicke d sowie der Betondeckung c_{nom} und dem Durchmesser der Schalenquerbewehrung zur äußeren Betonoberfläche:

$$h = d - 2 (c_{nom} + d_{wa})$$
 für Ankertyp 2 (3)

$$h = d - 2 (c_{nom} + \ddot{u}_q) \qquad \qquad \text{für Ankertyp 3} \tag{4}$$

Der Überstand der Querstrebe \ddot{u}_q ergibt sich aus der Querstrebenlänge abzüglich der Ankerbreite und wird mit \ddot{u}_q =10 mm angesetzt.

$$\ddot{u}_{q} = (h - I_{q}) / 2 = 10 \text{ mm}$$
 (5)

Die maximalen Ankerbreiten ergeben sich für d=400mm und $c_{nom}=15$ mm mit $h_{max}=358$ mm (Typ 2), bzw. $h_{max}=350$ mm (Typ 3). Die minimalen Ankerbreiten treten für $d_s=12$ mm bei h=170mm und $c_{min}=10$ mm mit $h_{min}=114$ mm (Typ 2 und 3) auf.

Die erforderlichen Ankerbreiten für verschiedene Wanddicken d sind beispielhaft für eine Betondeckung c_{nom}=30 mm in Tabelle 4 (Typ 2) bzw. Tabelle 5 (Typ 3) dargestellt.

Tabelle 4: Ankerbreite h für cnom=30 mm (Ankertyp 2)

Wanddicke	d=200 mm	d=250 mm	d=300 mm	d=360 mm	d=400mm
Ankerbreite h	128 mm	178 mm	228 mm	288 mm	328 mm

Tabelle 5: Ankerbreite h für c_{nom}=30 mm (Ankertyp 3)

Wanddicke	d=200 mm	d=250 mm	d=300 mm	d=360 mm	d=400mm
Ankerbreite h	120 mm	170 mm	220 mm	280 mm	320 mm

Mit der Breite h verändern sich die Abmessungen der Ankerelemente. Diese sind bei bekannter Breite h wie folgt zu berechnen.

Aus der Bedingung für die Gesamtlänge I_{ges}

$$l_{ges} = 2 (l_b + l_v + l_z)$$
 (6)

und der Definition der Ankerhöhe I

$$I = (I_b + I_v + I_z \sin \beta) = (I_b + I_v + h/2)$$
 mit $\beta = 45^{\circ}$ (7)

können die Einzelmaße der Doppelwandanker abgeleitet werden. Für die Länge der Zugstrebe gilt:

$$I_z = 1/\sqrt{2} \cdot h \tag{8}$$

Die Verbundlänge wird wie folgt berechnet:

$$I_b = I_{oes} / 2 - I_v - I_z = I_{oes} / 2 - 60 \text{ mm} - 1/\sqrt{2} \cdot \text{h}$$
 (9)

Für h=245 mm wird das Minimum der Verbundlänge mit I_b=365 mm erreicht, da für größere Ankerbreiten h≥246 mm der Doppelwandanker mit der Gesamtstablänge I_{ges}=1500 mm zu fertigen ist.

Die größtmögliche Ankerbreite liegt bei einer Wanddicke von d=400 mm und einer Betondeckung von $c_{nom}=15$ mm mit $h_{max}=358$ mm vor. In diesem Fall beträgt die Verbundlänge $I_b=433$ mm (s. Tabelle 6). In den Berechnungen zur Tragfähigkeit wird für alle Ankerbreiten auf der sicheren Seite liegend der maßgebende Minimalwert der Verbundlänge $I_{b.maßq}=365$ mm angesetzt.

Tabelle 6: Abmessungen der Ankerelemente

Ankerbreite	h=114 mm	h=180 mm	h=245 mm	h=300 mm	h=358 mm
Gesamtlänge I _{ges}	1200 mm	1200 mm	1200 mm	1500 mm	1500 mm
Ankerhöhe I	576 mm	563 mm	549 mm	688 mm	676 mm
Zugstrebenlänge I,	81 mm	127 mm	173 mm	212 mm	253 mm
Versatzlänge I _v	60 mm	61 mm	62 mm	63 mm	64 mm
Verbundlänge I _b	459 mm	412 mm	365 mm	475 mm	433 mm

4.5 MATERIAL DER DOPPELWANDANKER

Die Doppelwandanker werden aus Betonstahlstäben BSt 500/500 S hergestellt. Da die Querstrebe des Ankers ein- bzw. aufgeschweißt wird, muss das Material nach DIN 4099-1 [4] schweißbar sein.

Die Schweißnähte dürfen nicht in kalt verformten Bereichen ausgeführt werden. Aus diesem Grund sind die Querstreben um die Versatzlänge I_v =60 mm von der Biegestelle des Ankerstabs (Übergang Ankerschenkel – Zugstrebe) weiter unten anzuordnen.

Die Streckgrenze und der Elastizitätsmodul des Betonstahls werden gemäß DIN 1045-1 für Tragsicherheits- und Stabilitätsnachweise wie folgt angesetzt:

 $f_{vk} = 500 \text{ N/mm}^2$

E = 200.000 N/mm²

Die Schweiß- und Stabilitätsnachweise werden nach DIN 18800 ([6], [7]) unter Berücksichtigung von DIN 4099-1 [4] durchgeführt.

4.6 RÜCKHÄNGEBEWEHRUNG FÜR LASTFALL QUERZUG

Zur Erzielung höherer Traglasten beim Lastfall Querzug kann eine Rückhängebewehrung in Form eines gebogenen Zulagestabs Ø10 gemäß Bild 5 eingebaut werden.

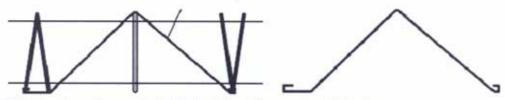


Bild 5: Rückhängebewehrungsstab Ø10 für höhere Querzugtragfähigkeiten.

Der Einbau hat unter Beachtung der folgenden Randbedingungen zu erfolgen:

Die Zulagebewehrung ist im Bereich zwischen Querstrebe und Dreieck außen um den Anker zu führen. Der Bewehrungsstab ist in der untere Schale an den Nachbar-Gitterträgern umzulenken und im Beton zu verankern. Der Abstand der Gitterträger darf 62 cm nicht überschreiten. Der Zulagestab muss symmetrisch hergestellt und eingebaut werden, die erforderlichen Betondeckungen sind einzuhalten.

Die Belastungen auf Querzug dürfen nur in der Richtung erfolgen, in die die Spitze der Rückhängebewehrung zeigt. Das Anschlagmittel ist an der Spitze des Ankers einzuhängen und gegen Verrutschen zu sichern. Die Betonschalenkanten sind durch Kanthölzer o. ä. vor Abplatzungen zu schützen

5 SICHERHEITSKONZEPT

5.1 GRUNDLAGE

Die Bernessung der Doppelwandanker basiert auf dem Globalsicherheitskonzept. Die Richtlinie der Berufsgenossenschaft der Bauwirtschaft BGR 106 [8] gibt einen globalen Sicherheitsfaktor γ bei Ermittlung der Ankertragfähigkeiten über statische Berechnungen an.

5.2 EINWIRKUNGEN

Die Einwirkungen bestehen aus dem Eigengewicht der Betonschalen G und der Last aus der Schalungshaftung H_A (s. Abs. 6). Die Einwirkenden sind als charakteristische Werte (Gebrauchslasten) zu kombinieren und mit dem Hublastbeiwert f nach DIN 15018-1 [5] zu erhöhen. Der Belastungswert ist damit wie folgt zu ermitteln:

$$F = f \cdot (G + H_A) \tag{10}$$

5.3 WIDERSTÄNDE

Für die Widerstandswerte R_K werden in der Regel die charakteristischen Werte der Widerstände gemäß DIN 1045-1 und DIN 18800 verwendet.

Abweichend von DIN 1045-1 für wird den Wert der charakteristischen Betonzugfestigkeit ein erhöhter unterer Quantilwert f_{ctk*} verwendet, der wie folgt definiert wird:

$$f_{ctk^*} = 0.85 f_{ctm}$$
 (11)

5.4 SICHERHEITSBEIWERTE

Für die Ermittlung der zulässigen Lastwerte ist der Globalsicherheitsbeiwert γ gemäß BGR 106 zu verwenden. Für Tragfähigkeiten auf Zug-, Schrägzug- und Querzugbelastung gilt einheitlich folgender Sicherheitsfaktor γ zwischen zulässiger Last und Bruchlast:

$$\gamma = 3.0 \tag{12}$$

5.5 GRENZWERTE

Die zulässigen Werte der Belastung zul F sind nach BGR 106 aus dem Quotienten des charakteristischen Widerstands R_k und dem globalen Sicherheitsfaktor γ zu berechnen:

$$zul F = R_k/\gamma \tag{13}$$

In den Tragfähigkeitstabellen (Anlage A) werden reduzierte Belastungswerte red F angegeben. Diese Werte sind zulässige Ankerkräfte, die bereits um einen Hublastbeiwert f nach Abs. 6.4 durch Division abgemindert wurden:

$$red F = zul F / f = R_k / (y \cdot f)$$
(14)

6 LASTANNAHMEN

6.1 ALLGEMEINES

Die Doppelwandanker sind gemäß BGR 106 [8] auf Beanspruchungen aus Eigengewicht und Schalungshaftkräften zu bemessen. Bei den Einwirkungen sind die Hublastbeiwerte f zu berücksichtigen (s. Abs. 6.4).

6.2 EIGENLASTEN

Das Eigengewicht der Doppelwand G ist wie folgt zu ermitteln:

$$G = \gamma \cdot V$$
 (15)
mit V Volumen beider Betonschalen
und $\gamma = 25 \text{ kN/m}^3$ Wichte von Stahlbeton

6.3 SCHALUNGSHAFTUNG

Die Haftungskräfte von Schalungen sind abhängig von der Oberflächenbeschaffenheit und von der geometrischen Struktur der Schalung. Bei stark strukturierten und verwinkelten Schalkörpern können die Kräfte ein Mehrfaches der üblichen Werte betragen.

Bei überwiegend ebenen Schalflächen sind die Haftungskräfte wie folgt zu ermitteln:

$$H_A = h_A \cdot A$$
 (16)
mit A haftende Schalungsfläche
und h_A Schalungshaftung

In Tabelle 7 sind einige Richtwerte für die Schalungshaftung h₄ aufgeführt.

Tabelle 7: Richtwerte für die Schalungshaftung

Schalungsart	Schalungshaftung h,
geölte Stahlschalung	1,0 kN/m ²
glatte Holzschalung	2,0 kN/m ²
raue Holzschalung	3,0 kN/m ²

6.4 HUBLASTBEIWERTE

Die Hublastbeiwerte f sind abhängig vom verwendeten Hebezeug, von der Hubgeschwindigkeit und von den Beschleunigungen beim Anheben, Fahren, Schwenken und Absetzen des Doppelwandelements.

In Tabelle 8 sind die Hublastbeiwerte f nach DIN 15018 [5] in Abhängigkeit von der Hubklasse und der Hubgeschwindigkeit v_h zusammengestellt.

Tabelle 8: Hublastbeiwerte nach DIN 15018

Hubklasse	Hublast	beiwert f
Hubriasse	v _h < 90 m/min	v _h ≥ 90 m/mir
H1	1,1 + 0,0022 V _h	1,3
H2	1,2 + 0,0044 v _h	1,6
НЗ	1,3 + 0,0066 V _h	1,9
H4	1,4 + 0,0088 V _h	2,2

In Tabelle 9 sind zur Orientierung übliche Wertebereiche der Hublastbeiwerte von verschiedenen Hebezeugen aufgeführt.

Tabelle 9: Übliche Hublastbeiwerte

Hebezeug (Hubklasse)	Hublastbeiwert f
Turmdrehkrane (H1)	1,1 bis 1,3
Autokrane (H2)	1,2 bis 1,6
Portalkrane (H2)	1,2 bis 1,6
Bagger	1,6 bis 2,5
Gabelstapler	1,6 bis 3,0

7 ELEMENTTRAGFÄHIGKEITEN

7.1 ALLGEMEINES

In den folgenden Abschnitten werden die Einzeltragfähigkeiten der Ankerelemente und der Betonschalen berechnet. Die Elemente werden in Abhängigkeit von der Belastungsart (Zug, Schrägzug, Querzug) in unterschiedlichem Maße beansprucht. In Abschnitt 8 werden die Beanspruchungen (Schnittgrößen) der Elemente ermittelt. In Abschnitt 9 erfolgt über die Zuordnung der Schnittgrößen zu den Einzeltragfähigkeiten die Bemessung der maßgebenden Gesamtankertragfähigkeiten in Abhängigkeit von der Belastungsart.

7.2 STAHLTRAGFÄHIGKEITEN

Ein Stahlversagen tritt bei Überschreitung der Streckgrenze ein. Die Stäbe der Doppelwandanker werden vorwiegend auf Normalkraft beansprucht.

Die Tragfähigkeit eines Ankerstabs wird wie folgt berechnet:

$$Z_{Rk} = N_{pl,k} = A_s f_{yk} = d_s^2/4 \cdot \pi \cdot f_{yk}$$
(17)

Die Streckgrenze des Betonstahls wird mit $f_{vk} = 500 \text{ N/mm}^2$ angesetzt.

In Tabelle 10 ist die Normalkrafttragfähigkeit in Abhängigkeit der Ankerstabdurchmesser dargestellt.

Tabelle 10: Stahltragfähigkeit der Ankerstäbe

Ankerschenkeldurchmesser		d _s =12 mm	d _s =14 mm
Stahltragfähigkeit	Z _{Rk}	56,5 kN	77,0 kN

7.3 WIDERSTAND GEGEN STABILITÄTSVERSAGEN

Die auf Druck beanspruchte Querstrebe der Doppelwandanker ist stabilitätsgefährdet. Der Widerstand gegen Stabilitätsversagen wird nach DIN 18800-2 [7] berechnet.

Die Knicklänge der Querstrebe bestimmt sich mit dem Knicklängenbeiwert $\beta=1,0$ aus der Ankerbreite h zu:

$$s_K = \beta h = 1.0 h$$
 (18)

Der Schlankheitsgrad λ_k eines Querschnitts wird wie folgt bestimmt:

$$\lambda_{k} = s_{K} / i = \beta h / i \tag{19}$$

Der Trägheitsradius i eines Kreisquerschnitts ergibt sich zu:

$$i = [I/A]^{0.5} = [(\pi d^4/64)/(\pi d^2/4)]^{0.5} = d/4$$
 (20)

Der Bezugsschlankheitsgrad λ_a wird aus dem Elastizitätsmodul E und der Streckgrenze f_{vk} berechnet:

$$\lambda_a = \pi (E / f_{vk})^{0.5} = \pi (200.000 / 500)^{0.5} = 20 \pi$$
 (21)

Der bezogene Schlankheitsgrad λ_k bestimmt sich mit $\beta = 1,0$ zu:

$$\underline{\lambda}_{k} = \lambda_{k} / \lambda_{a} = 4 \beta h / d / (20 \pi) = h / (5 \pi d) \approx h / (15,71 d)$$
 (22)

Der Parameter α nimmt nach DIN 18800-2 [7], Tab. 4 (KSL c) den Wert

$$\alpha = 0.49 \tag{23}$$

an. Mit dem Beiwert k kann die Formel für den Abminderungsfaktor κ bestimmt werden:

$$k = 0.5 (1 + \alpha (\underline{\lambda}_{K} - 0.2) + \underline{\lambda}^{2}_{K})$$
 (24)

$$\kappa = 1 / (k + (k^2 - \underline{\lambda}^2_K)^{0.5}) \quad \text{für } \underline{\lambda}_K > 0.2 \text{ , sonst: } \kappa = 1$$
 (25)

Der Tragwiderstand der Querstrebe gegen Stabilitätsversagen beträgt:

$$D_{Rk,k} = \kappa Z_{Rk} \tag{26}$$

7 Elementtragfähigkeiten

Im Rahmen dieser Typenberechnung werden die Widerstände der Querstrebe der Doppelwandanker gegen Stabilitätsversagen in drei Stufen für verschiedene Ankerbreiten (h≤200 mm, h≤260 mm und h≤360 mm) ermittelt und in Tabelle 11 in Abhängigkeit vom Querstrebendurchmesser dargestellt.

Tabelle 11: Widerstand gegen Stabilitätsversagen der Querstrebe

Querstrebendurchmesser		d _q =12 mm	d _q =14 mm
plast. N-Kraft	Z _{Rk}	56,5 kN	77,0 kN
Trägheitsradius	í	3,0 mm	3,5 mm
h = 200 mm			
Bezugsschlankheit	$\underline{\lambda}_{\kappa}$	1,061	0,909
Beiwert	k	1,274	1,087
Abminderungsfaktor	κ	0,505	0,594
Tragfähigkeit	D _{Rk,k200}	28,6 kN	45,7 kN
h = 260 mm			
Bezugsschlankheit	λ_k	1,379	1,182
Beiwert	k	1,740	1,440
Abminderungsfaktor	κ	0,357	0,442
Tragfähigkeit	D _{Rk,k260}	20,2 kN	34,0 kN
h = 360 mm			
Bezugsschlankheit	$\underline{\lambda}_k$	1,910	1,637
Beiwert	k	2,743	2,192
Abminderungsfaktor	κ	0,212	0,274
Tragfähigkeit	D _{Rk,k360}	12,0 kN	21,1 kN

7.4 TRAGFÄHIGKEIT DER SCHWEISSNÄHTE

Die Querstrebe der Doppelwandanker wird über Schweißnähte an die Ankerschenkel angeschlossen. Die Schweißnähte sind auf die Übertragung der maximalen Druckkräfte nach Tabelle 11, Abschnitt 7.3 auszulegen. Der Tragfähigkeit der Schweißnähte wird nach DIN 18800-1 [6] berechnet.

Die Schweißnähte sind gemäß DIN 4099-1 [4] auszuführen. Dabei sind die Schweißnähte für den Ankertyp2 als Stumpfstoß mit D-HV- oder D-HY-Naht auszubilden.

Die Tragfähigkeit der Schweißnaht für beide Ankertypen wird über die Schweißnahtfläche und unter Berücksichtigung des α_W -Wertes nach [6], Tabelle 8.69a, wie folgt berechnet:

$$D_{Rk,w} = A_w \cdot \alpha_w \cdot f_{yk} \qquad \text{mit } A_w = a_w \cdot I_w \text{ und } \alpha_w = 0,80 \tag{27}$$

Die Schweißnahtdicken und –längen für Ankertyp 2 werden zusammen mit den Tragfähigkeiten in Abhängigkeit vom Ankerschenkeldurchmesser in Tabelle 12 angegeben.

Tabelle 12: Abmessungen und Tragfähigkeit der Schweißnähte (Ankertyp 2)

Ankerschenkeldurchmesser		d _s =12 mm	d _s =14 mm
Schweißnahtdicke	a _w	3,0 mm	4,0 mm
Schweißnahtlänge	I _w	24,0 mm	28,0 mm
Tragfähigkeit	D _{Ak,w}	28,8 kN	44,8 kN

Bei Ankertyp 3 ist die Querstrebe Ø20 als tragender Kreuzungsstoß mit dem Ankerschenkel auszuführen. Gemäß DIN 4099, Abs. 6.2.4.1 [4] ist die Schweißnaht in der Dicke a_w und Länge I_w zu begrenzen.

Die Schweißnahtdicke a, darf den folgenden Wert nicht überschreiten.

$$a_w \le 0.3 d_s$$
 mit $d_s \le d_g$ (28)

Die Schweißnahtlänge ist auf den folgenden Wert zu begrenzen:

$$I_{w} \leq 0.5 \pi d_{s} \qquad \text{mit } d_{s} \leq d_{q} \qquad (29)$$

Die Schweißnahtdicken und -längen für Ankertyp 3 werden zusammen mit den Tragfähigkeiten in Abhängigkeit vom Ankerschenkeldurchmesser in Tabelle 13 angegeben.

Tabelle 13: Abmessungen und Tragfähigkeit der Schweißnähte (Ankertyp 3)

Ankerschenkeldurchmesser		d _s =12 mm	d _s =14 mm
Schweißnahtdicke	a,	3,6 mm	4,2 mm
Schweißnahtlänge	I _w	18,8 mm	22,0 mm
Tragfähigkeit	D _{Rk,w}	27,1 kN	37,0 kN

7.5 VERBUNDTRAGFÄHIGKEIT

Die Ankerschenkel der Doppelwandanker sind über Verbundspannungen in den Betonschalen der Doppelwandelemente verankert.

Die Tragfähigkeit der Verankerung wird über die Verbundfläche A_b bestimmt. Die Verbundfläche ist abhängig vom Stabdurchmesser der Ankerschenkel und der Verbundlänge I_b. Die Verbundlänge variiert in Abhängigkeit von der Ankerbreite, da die Doppelwandanker aus einem Stab mit fester Länge gebogen werden. In der vorliegenden Typenberechnung wird die minimale Verbundlänge auf der sicheren Seite liegend mit I_{b,maßg}=365 mm angesetzt (vgl. Abs. 4.4). Der Stabbereich der Ankerschenkel, der sich oberhalb der Querstrebe befindet, wird nicht auf die Verbundfläche angerechnet.

Der Verbundfläche A_b eines Ankerstabes wird wie folgt berechnet:

$$A_{b} = \pi \cdot d_{s} \cdot I_{b,ma8q} \tag{30}$$

Gemäß DIN 1045-1, Abs. 6.3 (4) ist zur Sicherstellung der vollen Verbundtragfähigkeit die Mindestbetonüberdeckung mit $c_{min} \ge d_s$ zu wählen. Da in der vorliegenden Ausführung die Betonüberdeckung der Ankerschenkel nach innen mit $c_{min} = 10$ mm kleiner als $d_s = 12$ mm, bzw. 14mm ausfällt, erfolgt eine Anpassung der Verbundspannungen in Abhängigkeit von der Betonüberdeckung c_{min} mit Hilfe des Reduktionsfaktors α_b nach folgender Gleichung:

$$\alpha_b = \frac{1}{2} (1 + c_{min} / d_s) \le 1,00$$
 (31)

Der Widerstand eines Ankerstabes gegen Verbundversagen A_{Rk} wird wie folgt berechnet:

$$A_{Rk} = \alpha_b \cdot A_b \cdot f_{bk} = \alpha_b \cdot \pi \cdot d_s \cdot I_{b,ma8g} \cdot f_{bk} \tag{32}$$

Die Verbundspannung f_{bk} wird auf Grund des hohen Sicherheitsniveaus des Globalsicherheitskonzepts und der geringeren Streuung der Betonzugfestigkeit in Fertigteilwerken mit dem erhöhten Quantilwert f_{clk*} nach Abschnitt 5.5 ermittelt:

$$f_{bk} = 2,25 f_{ctk}$$
 (33)

Die Verbundspannungen können in Abhängigkeit von der Betonfestigkeitsklasse der Tabelle 14 entnommen werden.

Tabelle 14: Verbundspannungen in N/mm²

Betonfestigkeitsklasse		C12/15	C16/20	C20/25	C25/30	C30/37
mittl. Betonzugfestigk.	f _{ctm}	1,60	1,90	2,20	2,60²	2,90
erhöhter Quantilwert	f _{ctk*}	1,36	1,62	1,87	2,21	2,47
Verbundfestigkeit	$f_{\rm bk}$	3,06	3,63	4,21	4,97	5,55

In Tabelle 15 sind die Verbundtragfähigkeiten eines Ankerschenkels in Abhängigkeit vom Schenkeldurchmesser d_s und der Betonfestigkeit zusammengestellt. In der Tabelle ist noch nicht berücksichtigt, dass die Verbundtragfähigkeit nicht die Stahltragfähigkeit des Ankerschenkelquerschnitts überschreiten kann.

Tabelle 15: Verbundtragfähigkeit eines Ankerschenkels

Ankerschenkeldurchmesser		d _s =12 mm	
Verbundlänge	l _{b.maßg}	365 mm	365 mm
Verbundfläche	A _b	13.760 mm ²	16.054 mm²
Reduktionsfaktor	α_{b}	0,917	0,857
Tragfähigkeit C12/15	A _{Rk,C12}	38,6 kN	42,1 kN
Tragfähigkeit C16/20	A _{RkC16}	45,8 kN	50,0 kN
Tragfähigkeit C20/25	A _{Rk,C20}	53,1 kN	57,9 kN
Tragfähigkeit C25/30	A _{Rk,C25}	62,7 kN	68,4 kN
Tragfähigkeit C30/37	A _{Rk,C30}	70,0 kN	76,3 kN

7.6 TRAGFÄHIGKEIT AUF HORIZONTALLASTEN

Bei Schrägzugbeanspruchung senkrecht zur Ankerebene werden die Schenkelstäbe der Doppelwandanker infolge der Horizontallastkomponente in der Höhe der Querstrebe seitlich gegen den Beton der Doppelwandschalen gepresst.

Neben einer Teilflächenpressung entstehen in dem Einleitungsbereich der Kraft Spaltzugspannungen, die bei Überschreitung der Betonzugfestigkeit zu einem lokalen Versagen durch Ausbrechen der belasteten Betonscholle führen.

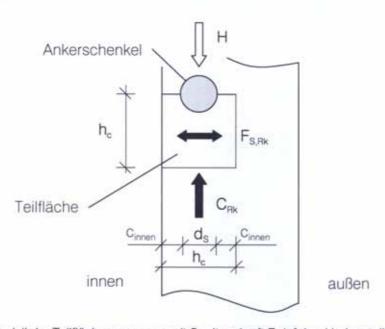


Bild 6 Modell der Teilflächenpressung mit Spaltzugkraft Fs infolge Horizontallast H (Horizontalschnitt)

Die Spaltzugkraft infolge der Horizontallast H beträgt nach DAfStb-Heft 240 [2]:

$$F_S = H / 4 (1 - d_S / h_c)$$
 mit $h_c = d_S + 2 c_{innen}$ (34)

Im Grenzzustand der Tragfähigkeit ($H=C_{Rk}$) erreichen die Spaltzugspannungen über die Pressungslänge I_c des Ankerschenkels und über die Verteilungshöhe h_c die maßgebende Betonzugfestigkeit f_{crk^*} :

$$F_{s,Rk} = h_c \cdot I_c \cdot f_{ctk}. \tag{35}$$

Daraus resultiert folgende Horizontallasttragfähigkeit C_{Rk} des Ankerschenkelstabs:

$$C_{Rk} = 4 F_{S,Rk} / (1 - d_S / h_c) = 4 h_c \cdot l_c / (1 - d_S / h_c) \cdot f_{ctk}.$$
 (36)

$$C_{Rk} = k_c \cdot A_c \cdot f_{ctk}$$
 mit $k_c = 4 / (1 - d_S / h_c)$, $A_c = h_c \cdot I_c$ (37)

Die Pressungslänge Ic des Ankerschenkels beträgt

 $I_c = 80 \text{ mm}$

für Ankertyp 2

(38)

und

 $I_{c} = 100 \, \text{mm}$

für Ankertyp 3.

(39)

In Tabelle 16 sind die Tragfähigkeiten eines Ankerschenkels auf Horizontallasten für Ankertyp 2 und 3 in Abhängigkeit vom Schenkeldurchmesser de zusammengestellt.

Tabelle 16: Horizontaltragfähigkeit parallel zur Wandebene eines Ankerschenkels (Ankertyp 2)

		Anke	rtyp 2	Anke	rtyp 3
Ankerschenkeldurchme	sser	d _s =12 mm	d _s =14 mm	d _s =12 mm	d _s =14 mm
Verteilungshöhe	h _c	32 mm	34 mm	32 mm	34 mm
Koeffizient	1000 k _c	6,40	6,80	6,40	6,80
wirksame Betonfläche	Ac	2560 mm²	2720 mm ²	3200 mm ²	3400 mm²
Tragfähigkeit C12/15	C _{Rk,C12}	22,3 kN	25,2 kN	27,9 kN	31,4 kN
Tragfähigkeit C16/20	C _{Rk,C16}	26,5 kN	29,9 kN	33,1 kN	37,3 kN
Tragfähigkeit C20/25	C _{Rk,C20}	30,6 kN	34,6 kN	38,3 kN	43,2 kN
Tragfähigkeit C25/30	C _{Rk,C25}	36,2 kN	40,9 kN	45,3 kN	51,1 kN
Tragfähigkeit C30/37	C _{Rk,C30}	40,4 kN	45,6 kN	50,5 kN	57,0 kN

7.7 TRAGFÄHIGKEIT AUF QUERLASTEN

7.7.1 Unverstärkte Doppelwandanker

Bei Beanspruchung von unverstärkten Doppelwandankern auf Querzug orthogonal zur Wandebene (Lastfall "Aufheben") leiten die Ankerschenkel im oberen Bereich die Kräfte orthogonal zur Schalenebene über Pressung (obere Schale), bzw. Zugspannungen (untere Schale) in den Beton.

Der Versagensmechanismus ist ein doppelter Betonausbruch – auf der Innenseite der untere Schale und auf der Außenseite der oberen Schale.

Die Quertragfähigkeit wird mit Hilfe von Querzugversuchen an unverstärkten Doppelwandankern bestimmt. Neben dem Einfluss des Ankerstabdurchmessers ist die Höhe der Betondeckung in der Bemessungsformel zu berücksichtigen. Auf Basis der Versuche wird folgende empirische Formel für den Widerstand gegen Querlast ohne Rückhängebewehrung definiert:

$$B_{Rk} = f_{Q} (c_{nom} / c_{nom}^{0}) d_{S}^{0.5} \cdot f_{ctk^{*}} \qquad mit f_{Q} = 3.8 \ 10^{-3}$$

$$c_{nom}^{0} = 20 \ mm$$
(40)

Auf Grund des hohen Sicherheitsniveaus des Globalsicherheitskonzepts und der geringeren Streuung der Betonzugfestigkeit in Fertigteilwerken wird in der Bemessungsgleichung der erhöhte Quantilwert f_{ctk^*} nach Abschnitt 5.5 verwendet. In der Formel ist die tatsächlich vorhandene Betonüberdeckung der Schalenquerbewehrung zur Außenoberfläche c_{nom} einzusetzen.

In Tabelle 17 sind die Tragfähigkeiten der Anker auf Querlasten in Abhängigkeit vom Schenkeldurchmesser d_s und der Betonfestigkeitsklasse für den Wert der äußeren Betondeckung c_{nom}=20 mm zusammengestellt.

Tabelle 17: Tragfähigkeit auf Querlasten bei unverstärkten Doppelwandankern für cnom=20mm

Ankerschenkeldurchmesser		d _s =12 mm	d _s =14 mm	
Tragfähigkeit C12/15	B _{RKC12}	17,9 kN	19,3 kN	
Tragfähigkeit C16/20	B _{Rk,C16}	21,3 kN	23,0 kN	
Tragfähigkeit C20/25	B _{Rk,C20}	24,6 kN	26,6 kN	
Tragfähigkeit C25/30	B _{Rk,C25}	29,1 kN	31,4 kN	
Tragfähigkeit C30/37	B _{Rk,C30}	32,4 kN	35,0 kN	

7.7.2 Doppelwandanker mit Rückhängebewehrung

Bei Querzugbeanspruchung von Doppelwandankern, die eine werkseitig eingebaute Rückhängebewehrung nach Abschnitt 4.6 erhalten, werden im Vergleich zu unverstärkten Ankern wesentlich höhere Tragfähigkeiten erzielt.

Der Versagensmechanismus ist ein doppelter Betonausbruch – auf der Innenseite der untere Schale und auf der Außenseite der oberen Schale – der durch die Lastumlenkung und durch die Versteifung erst bei höheren Lasten eintritt. Die Rückhängebewehrung aus einem V-förmig aufgebogenem Bewehrungsstab Ø10 leitet einen Teil der aufgebrachten Querlast in die Gitterträger und in die untere Betonschale.

Im Bereich hoher Lasten nach der Bruchlast zeigen sich weitere Versagenserscheinungen, z.B. ein Ausknicken einzelner Gitterträgerdiagonalen und ein Verbundversagen der Bewehrung. Diese Versagensarten sind nicht maßgebend und werden im Weiteren vernachlässigt. Für kleinere Ankerdurchmesser wird eine Bemessung der Querstrebe auf Ausknicken durchgeführt.

Die verstärkte Quertragfähigkeit wird mit Hilfe von Querzugversuchen an Doppelwandankern mit Rückhängebewehrung Ø10 bestimmt. Die Bemessungsformel nach Abschnitt 7.7.1 wird um einen additiven Term erweitert. Auf Basis der Versuche wird folgende empirische Formel für den Widerstand gegen Ankerquerausbruch mit Rückhängebewehrung definiert:

$$B_{Rk,R} = B_{Rk} + f_{QR} \cdot d_S^{0.5} \cdot f_{ctk^*}$$
 mit $f_{QR} = 3,4 \cdot 10^{-3}$ (41)

$$B_{Rk,R} = [f_Q (c_{nom}/c_{nom}^0) + f_{QR}] d_S^{0.5} \cdot f_{ctk^*} \quad \text{mit } f_Q = 3.8 \ 10^{.3} \eqno(42)$$

In Tabelle 18 sind die Tragfähigkeiten der Anker auf Querlasten in Abhängigkeit vom Schenkeldurchmesser d_s und der Betonfestigkeitsklasse für den Wert der äußeren Betondeckung c_{nom} =20 mm zusammengestellt.

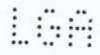


Tabelle 18: Tragfähigkeiten auf Querlasten mit Rückhängebewehrung Ø10 für c_{nom} =20mm

Ankerschenkeldurchmesser		d _s =12 mm	d _s =14 mm
Tragfähigkeit C12/15	B _{Rk,R,C12}	33,9 kN	36,6 kN
Tragfähigkeit C16/20	B _{RKR,C16}	40,3 kN	43,5 kN
Tragfähigkeit C20/25	B _{Rk,R,C20}	46,6 kN	50,4 kN
Tragfähigkeit C25/30	B _{RKR,C25}	55,1 kN	59,5 kN
Tragfähigkeit C30/37	B _{RKR,C30}	61,5 kN	66,4 kN

8 SCHNITTGRÖSSEN

8.1 ALLGEMEINES

In den folgenden Abschnitten erfolgt eine Kategorisierung anhand der Beanspruchungsart der Doppelwandanker. Die Anker können eine Belastung aus zentrischem Zug (Last in Richtung der Ankerachse), aus Schrägzug (Zug mit Querlast orthogonal zur Ankerebene) und aus Querzug (Kraft parallel zur Ankerebene) erfahren.

Schrägzugkräfte entstehen sowohl beim Anheben eines aufrecht stehenden Doppelwandelements als auch beim "Aufheben" eines liegenden Elements, sofern ein schräges Seil- oder Stabgehänge verwendet wird. Eine Möglichkeit, Schrägzug zu verhindern, ist das Anheben der Doppelwandelemente mit steifen Traversen.

Die Schnittgrößen, d.h. die Kräfte in den Ankerstäben und die Reaktionskräfte in den Betonschalen, werden für jede Lastrichtung getrennt ermittelt.

8.2 BEANSPRUCHUNG DURCH EIN SEILGEHÄNGE

Beim Anheben und Versetzen oder beim Aufrichten eines Doppelwandelements werden die Doppelwandanker i.d.R. mit einem Seilgehänge verbunden, das am Lastsammelpunkt an einem Kranhaken hängt. Die Hublast wird über die schrägen Seile auf die Anker übertragen. Die Seilkräfte S wirken im Neigungswinkel α gegenüber der Vertikalen, bzw. der Ankerachse. Die Anker werden in Folge durch die schrägen Seilkräfte S beansprucht.

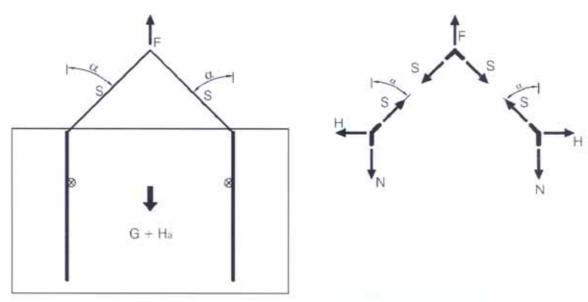


Bild 7: Modell einer Doppelwand mit zwei symmetrisch angeordneten Ankerne

Die Gesamtkraft des Gehänges F verteilt sich bei statisch bestimmter Lagerung über die Gleichgewichtsbedingungen auf die Gehängeseile. Sind mehr als zwei Doppelwandanker erforderlich, ist ein Ausgleichsgehänge zu verwenden, um die Kraftaufteilung genau zu bestimmen.

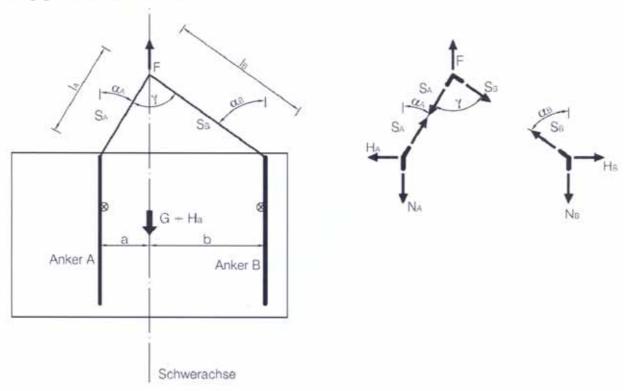


Bild 8: Modell einer Doppelwand mit zwei unsymmetrisch angeordneten Ankern

Im Fall mit zwei unsymmetrisch angeordneten Doppelwandankern (vgl. Bild 8) sind die Ankerkräfte wie folgt zu bestimmen.

$$F = N_A + N_B \tag{43}$$

$$N_A = F \cdot b / (a+b) \tag{44}$$

$$N_{B} = F \cdot a / (a+b) \tag{45}$$

Die Horizontalkomponenten der Seile stehen im Gleichgewicht. Im vorliegenden Fall gilt:

$$H_{A} = H_{B} \tag{46}$$

$$H_A = N_A \tan \alpha_A \tag{47}$$

$$H_B = N_B \tan \alpha_B \tag{48}$$

Die Neigung α der Seile wird über die Seillänge I berechnet:

$$\sin \alpha_{A} = a / I_{A} \tag{49}$$

$$\sin \alpha_{\rm B} = b / I_{\rm B} \tag{50}$$

Der Lastsammelpunkt des Gehänges muss mit der Schwerachse des Doppelwandelements zusammenfallen, da ansonsten das Element beim Anheben eine Verdrehung erfährt. Der Neigungswinkel darf α =45° nicht überschreiten.

Die Beanspruchung der Anker wird in eine normale (bzw. in Richtung der Ankerachse wirkende) und eine horizontale (bzw. orthogonal zur Ankerebene wirkende) Komponente zerlegt.

Sinngemäß gilt die Betrachtung auch für Querzug-Beanspruchungen der Anker, wenn ein liegendes Doppelwandelement mit schrägem Gehänge aufgerichtet wird ("Aufheben").

8.3 LASTFALL ZENTRISCHER ZUG

Bei der Beanspruchung in Normalrichtung der Doppelwandanker durch zentrischen Zug entsteht zunächst das in Bild 9 dargestellte statische System mit den angezeichneten Kräften (Gebrauchszustand).

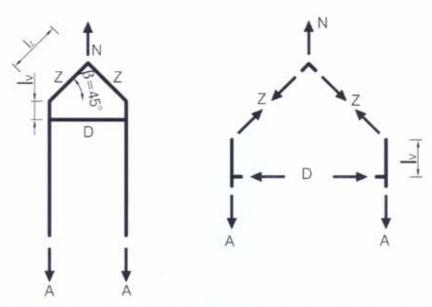


Bild 9: Stabwerkmodell eines Doppelwandankers im Lastfall zentrischer Zug (Gebrauchszustand)

In Folge zunehmender Belastungen entstehen durch die Momentenbeanspruchung der Ankerschenkel im Bereich der Versatzlänge zu plastischen Verformungen, die ein Aufstellen der Ankerstäbe bewirken. Dadurch verändert sich die Stabwerkgeometrie und damit die Stabkräfte (vgl. Bild 10).



Bild 10: Stabwerkmodell eines Doppelwandankers im Lastfall zentrischer Zug (Bruchzustand)

Die Neigung der Zugstreben beträgt im Gebrauchszustand $\beta=45^\circ$. Im Bruchzustand verlängern sich die Zugstreben um die Versatzlänge I_V der Ankerschenkel und die Neigung zur Vertikalen nimmt zu. Die Neigung der Zugstreben β im Bruchzustand ist wie folgt zu ermitteln:

$$\cos \beta = h / (2 (l_v + l_z)) = h / (120mm + \sqrt{2} h)$$
 (51)

mit $I_v = 60$ mm; $I_z = 1/\sqrt{2}$ h

Für die im Rahmen dieser Typenberechnung minimale und maximale Ankerbreite h_{min} =114 mm, bzw. h_{max} =358 mm wird die Neigung β berechnet:

h=114 mm:
$$\beta = \arccos \left[114 / (120 + \sqrt{2} \ 114) \right] = 66.1^{\circ}$$
 (52)

h=358 mm:
$$\beta = \arccos [358 / (120 + \sqrt{2} 358)] = 55,1^{\circ}$$
 (53)

Vereinfachend wird für alle Ankerdimensionen ein Neigungswinkel von $\beta=60^{\circ}$ für den Bruchzustand angenommen. Im Folgenden werden die Schnittgrößen am Stabwerkmodell des Bruchzustandes ermittelt.

Die Ankerkraft N teilt sich in gleicher Größe auf die Kräfte der Ankerschenkelkräfte · A auf.

$$A = N/2 \tag{54}$$

Die Kräfte in den Zugstreben und in der Querstrebe sind wie folgt zu bestimmen:

$$Z = A / \sin \beta = N / (2 \sin 60^{\circ}) \approx 0,577 N$$
 (55)

$$D = -Z \cos \beta = -N / (2 \tan \beta) = -N / (2 \tan 60^{\circ}) \approx -0.289 N$$
 (56)

8.4 LASTFALL SCHRÄGZUG

Bei schrägem Lastangriff aus Seilen entsteht analog zum Lastfall zentrischer Zug (vgl. Abs. 8.3) in Folge der zunehmenden Ankerbelastung durch Verformung des oberen Ankerbereichs im Richtung der Schrägzugkraft ein statisches System des Bruchzustands (vgl. Bild 11).

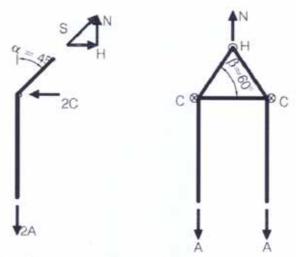


Bild 11: Stabwerkmodell eines Doppelwandankers im Lastfall Schrägzug (Bruchzustand)

Das statische Modell entspricht einem Seiltragwerk. Der Neigungswinkel wird im Folgenden auf der sicheren Seite liegend mit α =45° angenommen.

Infolge der Schiefstellung der Zugdiagonalen ergeben sich folgende Schnittgrößen:

$$Z = S / (2 \cdot \sin \beta) = S / (2 \sin 60^{\circ}) \approx 0,577 S$$
 (57)

$$D = -Z \cos \beta = -S / (2 \tan \beta) = -S / (2 \tan 60^{\circ}) \approx -0.289 S$$
 (58)

Die Zugkomponente der Seilkraft in Normalrichtung N wird gemäß Abs. 8.3 über Verbundwirkung in die Betonschalen abgetragen.

$$N = S \cdot \cos \alpha = S / \sqrt{2} \tag{59}$$

$$A = N/2 = S/2 \cdot \cos \alpha = S/2\sqrt{2}$$
(60)

Die horizontal wirkende Kraftkomponente H wird über Reaktionskräfte C in den Betonschalen in der Höhe der Querstrebe des Ankers aufgenommen.

$$C = H/2 = S/2 \cdot \sin \alpha = S/2\sqrt{2}$$
 (61)

8.5 LASTFALL QUERZUG

Bei der Beanspruchung durch Querzug, parallel zur Ebene der Doppelwandanker, wirken die in Bild 12 dargestellten Kräfte.

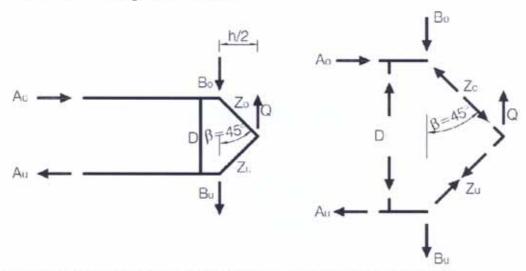


Bild 12: Kräfte am Stabwerkmodell eines durch Querzug belasteten Doppelwandankers.

Die Vertikal wirkende Querzugkraft Q wird am Ankerkopf in die Ankerstäbe eingeleitet. Die Übertragung der Kräfte in die Betonschalen wird in Höhe der Querstrebe angesetzt. Die Tragkomponenten der oberen und der unteren Schale wird als Summenwert B in den Tragfähigkeiten berücksichtigt.

$$Q = B_0 + B_U = B \tag{62}$$

Es wird angenommen, dass das Verhältnis für die Verteilung der Lasten auf die obere und untere Betonschale sich zwischen den folgenden Grenzwerten befindet:

$$0.50 \le B_0/B_0 \le 2.00$$
 (63)

Für die Beanspruchung der Querstrebe bei Umlagerung von B_u ergibt sich damit die folgende maximale Beanspruchung:

$$D = B_U \le 2/3 Q \tag{64}$$

Die Kräfte in den Diagonalen sind wie folgt zu bestimmen:

$$Z_0 = -Q/(2\cos\beta) = -Q/(2\cos45^\circ) = -Q/\sqrt{2}$$
 (Druck) (65)

$$Z_{U} = -Z_{O} = Q / \sqrt{2} \text{ (Zug)}$$

$$(66)$$

Die Kräfte der Ankerschenkel halten das System im Gleichgewicht:

$$A_U h = Q \cdot h / 2 \tag{67}$$

$$A_{U} = Q/2 \tag{68}$$

$$A_0 = -A_U = -Q/2$$
 (69)

9 ANKERTRAGFÄHIGKEITEN

9.1 ALLGEMEINES

In den folgenden Absätzen werden aus den in Abschnitt 7 ermittelten Tragfähigkeiten der Ankerelemente mit Hilfe der Schnittgrößenermittlung aus Abschnitt 8 und dem Sicherheitskonzept aus Abschnitt 5 zulässige und reduzierte Ankerkräfte in Abhängigkeit von der Ankerbeanspruchung (Lastfall) und der Ankergröße zusammengestellt.

Die maßgebende Ankertragfähigkeit ergibt sich aus dem geringsten Widerstand gegen Versagen aller Ankerelemente. Die zulässigen Belastungswerte für die Doppelwandanker sind durch Division der Traglast durch den globalen Sicherheitsfaktor γ gemäß Abschnitt 5 zu berechnen.

9.2 TRAGFÄHIGKEIT AUF ZENTRISCHE ZUGLASTEN

Die Tragfähigkeit der Doppelwandanker auf zentrischen Zug N_{Rk} wird durch die maßgebenden Tragfähigkeiten der Ankerelemente begrenzt. Aus dem Verhältnis der Schnittgrößen nach Abschnitt 8 wird aus den einzelnen Versagenswiderständen die Gesamttraglast berechnet:

$$N_{Rk} = min \begin{cases} 2 A_{Rk} \\ 2 \sin 60^{\circ} Z_{Rk} \\ 2 \tan 60^{\circ} D_{Rk,K} \\ 2 \tan 60^{\circ} D_{Rk,W} \end{cases}$$
 (70)

Mit:

A_{Rk} Verbundtragfähigkeit Ankerschenkel

Z_{Rk} Stahltragfähigkeit Zugstrebe D_{Rk K} Knicktragfähigkeit Querstrebe

D_{Rk.W} Tragfähigkeit Schweißnaht Querstrebe

Aus der maßgebenden Traglast N_{Rk} der Doppelwandanker auf zentrischen Zug wird durch Division durch den globalen Sicherheitsfaktor γ die zulässige zentrische Last zul N bestimmt:

$$zul N = N_{Rk}/\gamma \tag{71}$$

Im Folgenden werden die zulässigen Belastungswerte zul N der Doppelwandanker für zentrischen Zug in Abhängigkeit vom Ankerstabdurchmesser angegeben. Die Darstellung erfolgt getrennt in drei Tabellen.

In Tabelle 19 sind die Werte für Ankertyp 2 aufgeführt, die aus den Stahl- und Schweißnahttragfähigkeiten Z_{Rk} und $D_{Rk,w}$ sowie den Widerstanden gegen Stabilitätsversagen $D_{Rk,k}$ resultieren. In Tabelle 20 stehen die entsprechenden Werte für Ankertyp 3. Die zulässigen Ankerlasten zul N werden abhängig von der Ankerbreite (h \leq 200 mm, h \leq 260 mm und h \leq 360 mm) angegeben.

Die typunabhängigen zulässigen Ankerlasten zul N in Tabelle 21 stammen aus den Verbundtragfähigkeiten A_{Rk} und sind in Abhängigkeit von der Betonfestigkeitsklasse aufgeführt.

Für jeden Einbaufall ist die minimale zulässige zentrische Ankerlast aus den maßgebenden Tabellenwerten zu bestimmen:

$$zul N = min \begin{cases} zul N_{200/260/300} \\ zul N_{C12/C16/C20/C25/C30} \end{cases}$$
 (72)

Tabelle 19: Zulässige zentrische Ankerlasten inf. Stahl-, Schweiß- und Stabilitätswiderstand (Ankertyp 2)

Ankerschenkeldurchmesser		d _s =12 mm	d _s =14 mm	
zulässige Zuglast h ≤ 200 mm zul N		32,6 kN	44,4 kN	
zulässige Zuglast h ≤ 260 mm	zul N ₂₆₀	23,3 kN	39,3 kN	
zulässige Zuglast h ≤ 360 mm	zul N ₃₆₀	13,9 kN	24,4 kN	

Tabelle 20: Zulässige zentrische Ankerlasten inf. Stahl-, Schweiß- und Stabilitätswiderstand (Ankertyp 3)

Ankerschenkeldurchmesser		d _s =12 mm	d _s =14 mm	
zulässige Zuglast h ≤ 200 mm zul N		31,3 kN	42,7 kN	
zulässige Zuglast h ≤ 260 mm	zul N ₂₆₀	31,3 kN	42,7 kN	
zulässige Zuglast h ≤ 360 mm	zul N ₃₆₀	31,3 kN	42,7 kN	

Tabelle 21: Zulässige zentrische Ankerlasten infolge Verbundtragfähigkeit (Ankertyp 2 und 3)

Ankerschenkeldurchmesser	d _s =12 mm	d _s =14 mm		
zulässige Zuglast C12/15	zul N _{C12}	25,7 kN	28,1 kN 33,3 kN	
zulässige Zuglast C16/20	zul N _{C16}	30,6 kN		
zulässige Zuglast C20/25	zul N _{c20}	35,4 kN	38,6 kN	
zulässige Zuglast C25/30	zul N _{C25}	41,8 kN	45,6 kN	
zulässige Zuglast C30/37	zul N _{c30}	46,6 kN	50,9 kN	

9.3 TRAGFÄHIGKEIT AUF SCHRÄGZUGLASTEN

Die Tragfähigkeit der Doppelwandanker auf Schrägzug S_{Rk} wird durch die maßgebenden Tragfähigkeiten der Ankerelemente begrenzt. Aus dem Verhältnis der Schnittgrößen nach Abschnitt 8 wird aus den einzelnen Versagenswiderständen die Gesamttraglast berechnet:

$$S_{Rk} = min \begin{cases} 2\sqrt{2} A_{Rk} \\ 2 \sin 60^{\circ} Z_{Rk} \\ 2 \tan 60^{\circ} D_{Rk,K} \\ 2 \tan 60^{\circ} D_{Rk,W} \\ 2\sqrt{2} C_{Rk} \end{cases}$$
 (73)

Mit:

A_{Rk} Verbundtragfähigkeit Ankerschenkel

Z_{Rk} Stahltragfähigkeit Zugstrebe D_{Rk,K} Knicktragfähigkeit Querstrebe

D_{Rk,W} Tragfähigkeit Schweißnaht Querstrebe C_{Rk} Horizontallasttragfähigkeit Betonschalen

Aus der maßgebenden Traglast S_{Rk} der Doppelwandanker auf Schrägzug wird durch Division durch den globalen Sicherheitsfaktor γ die zulässige Schrägzuglast zul S bestimmt:

$$zul S = S_{Rk} / \gamma \tag{74}$$

Im Folgenden werden die zulässigen Belastungswerte zul S der Doppelwandanker für Schrägzug in Abhängigkeit vom Ankerstabdurchmesser angegeben. Die Darstellung erfolgt getrennt in vier Tabellen.

In Tabelle 22 sind die Werte für Ankertyp 2 aufgeführt, die aus den Stahl- und Schweißnahttragfähigkeiten $Z_{\rm fik}$ und $D_{\rm fik,w}$ sowie den Widerstanden gegen Stabilitätsversagen $D_{\rm fik,k}$ resultieren. In Tabelle 23 stehen die entsprechenden Werte für Ankertyp 3. Die zulässigen Schrägzuglasten zul S werden abhängig von der Ankerbreite (h \leq 200 mm, h \leq 260 mm und h \leq 360 mm) angegeben.

Die zulässigen Schrägzuglasten zul S in Tabelle 24, bzw. Tabelle 25 stammen aus den Verbundtragfähigkeiten A_{Rk} und den Pressungswiderständen C_{Rk} und sind für Ankertyp 2, bzw. Ankertyp 3 in Abhängigkeit von der Betonfestigkeitsklasse aufgeführt.

Für jeden Einbaufall ist die minimale zulässige Schrägzuglast aus den maßgebenden Tabellenwerten zu bestimmen:

$$zul S = min \begin{cases} zul S_{200/260/300} \\ zul S_{C12/C16/C20/C25/C30} \end{cases}$$
 (75)

Die Schrägzug-Tragfähigkeiten zul S werden aus baupraktischen Gründen in den Tragfähigkeitstabellen in Anlage A auf den Wert der zugehörigen zulässigen zentrischen Zuglast zul N begrenzt..

Tabelle 22: Zulässige Schrägzuglasten inf. Stahl-, Schweiß- und Stabilitätswiderstand (Ankertyp 2)

Ankerschenkeldurchmesser		d _s =12 mm	d _s =14 mm
zul. Schrägzuglast h ≤ 200 mm	zul S ₂₀₀	32,6 kN	44,4 kN
zul. Schrägzuglast h ≤ 260 mm	zul S ₂₆₀	23,3 kN	39,3 kN
zul. Schrägzuglast h ≤ 360 mm	zul S ₃₆₀	13,9 kN	24,4 kN

Tabelle 23: Zulässige Schrägzuglasten inf. Stahl-, Schweiß- und Stabilitätswiderstand (Ankertyp 3)

Ankerschenkeldurchmesser		d _s =12 mm	d _s =14 mm
zul. Schrägzuglast h ≤ 200 mm	zul S ₂₀₀	zul S ₂₀₀ 31,3 kN	42,7 kN
zul. Schrägzuglast h ≤ 260 mm	zul S ₂₆₀	31,3 kN	42,7 kN
zul. Schrägzuglast h ≤ 360 mm	zul S ₃₆₀	31,3 kN	42,7 kN

Tabelle 24: Zulässige Schrägzuglasten infolge Verbund- und Pressungstragfähigkeit (Ankertyp 2)

Ankerschenkeldurchmesser		d _s =12 mm	d _s =14 mm
zul. Schrägzuglast C12/15	zul S _{C12}	21,0 kN	23,7 kN
zul. Schrägzuglast C16/20 zul S _{C16}		24,9 kN	28,2 kN
zul. Schrägzuglast C20/25	zul S _{c20}	28,9 kN	32,6 kN
zul. Schrägzuglast C25/30	zul S _{⇔5}	34,1 kN	38,5 kN
zul. Schrägzuglast C30/37	zul S _{C30}	38,1 kN	43,0 kN

Tabelle 25: Zulässige Schrägzuglasten infolge Verbund- und Pressungstragfähigkeit (Ankertyp 3)

Ankerschenkeldurchmesser	d _s =12 mm	d _s =14 mm		
zul. Schrägzuglast C12/15 zul S _{C12}		26,3 kN	29,6 kN	
zul. Schrägzuglast C16/20 zul S		31,2 kN	35,2 kN	
zul. Schrägzuglast C20/25	zul S _{C20}	36,1 kN	40,8 kN	
zul. Schrägzuglast C25/30	zul S _{C25}	42,7 kN	48,2 kN	
zul. Schrägzuglast C30/37 zul S _{□30}		47,6 kN	53,7 kN	

9.4 TRAGFÄHIGKEIT AUF QUERZUGLASTEN

Die Tragfähigkeit der Doppelwandanker auf Querzug Q_{Rk}, bzw. Q_{RkR} wird durch die maßgebenden Elementtragfähigkeiten begrenzt. Aus dem Verhältnis der Schnittgrößen nach Abschnitt 8 wird aus den einzelnen Versagenswiderständen die Gesamttraglast berechnet.

Die Querzugtragfähigkeit Q_{Rk} der unverstärkte Ausführung der Doppelwandanker ist wie folgt zu bestimmen:

$$Q_{Rk} = min \begin{cases} 2 A_{Rk} \\ B_{Rk} \\ \sqrt{2} Z_{Rk} \\ 1,5 D_{Rk,K} \\ 1,5 D_{Rk,W} \end{cases}$$
 (76)

Die Querzugtragfähigkeit Q_{RK,R} der verstärkten Ausführung der Doppelwandanker mit Rückhängebewehrung gemäß Abs.4.6 Doppelwandanker ist wie folgt zu bestimmen:

$$Q_{Rk,R} = min \begin{cases} 2 A_{Rk} \\ B_{Rk,R} \\ \sqrt{2} Z_{Rk} \\ 1,5 D_{Rk,K} \\ 1,5 D_{Rk,W} \end{cases}$$

$$(77)$$

Mit: A_{Rk} Verbundtragfähigkeit Ankerschenkel

B_{Rk} Widerstand gegen Ankerquerausbruch (unverstärkt)

B_{RkR} Widerstand gegen Ankerquerausbruch (mit RHB)

Z_{Rk} Stahltragfähigkeit Zugstrebe D_{RkK} Knicktragfähigkeit Querstrebe

D_{RkW} Tragfähigkeit Schweißnaht Querstrebe

Aus der maßgebenden Traglast Q_{Rk} , bzw. $Q_{Rk,R}$ der Doppelwandanker auf Querzug wird durch Division durch den globalen Sicherheitsfaktor γ die zulässige Querzuglast zul Q_R bzw. zul Q_R bestimmt:

$$zul Q_{(R)} = Q_{Rk} / \gamma \tag{78}$$

Im Folgenden werden die zulässigen Belastungswerte zul Q, bzw. zul Q_R der Doppelwandanker für Querzug in Abhängigkeit vom Ankerstabdurchmesser angegeben. Die Darstellung erfolgt getrennt in vier Tabellen.

In Tabelle 26 sind die Werte für Ankertyp 2 aufgeführt, die aus den Stahl- und Schweißnahttragfähigkeiten Z_{Rk} und $D_{Rk,w}$ sowie den Widerstanden gegen Stabilitätsversagen $D_{Rk,k}$ resultieren. In Tabelle 27 stehen die entsprechenden Werte für Ankertyp 3. Die zulässigen Ankerlasten zul N werden abhängig von der Ankerbreite (h \leq 200 mm, h \leq 260 mm und h \leq 360 mm) angegeben.

Die typunabhängigen zulässigen Querzuglasten zul Q in Tabelle 28 stammen aus den Verbundtragfähigkeiten A_{Rk} und den Widerständen gegen Ankerquerausbruch B_{Rk} der unverstärkten Ausführung und sind in Abhängigkeit von der Betonfestigkeitsklasse aufgeführt. In Tabelle 29 sind die zulässigen Querzuglasten der Ausführung mit Rückhängebewehrung (RHB) dargestellt.

Für jeden Einbaufall ist die minimale zulässige Ankerquerzuglast aus den maßgebenden Tabellenwerten zu bestimmen.

Für die unverstärkte Ausführung gilt:

$$zul Q = min \begin{cases} zul Q_{200/260/300} \\ zul Q_{C12/C16/C20/C25/C30} \end{cases}$$
 (79)

Für die verstärkte Ausführung mit Rückhängebewehrung gilt:

$$zul Q_{R} = min \begin{cases} zul Q_{200/260/300} \\ zul Q_{R,C12/C16/C20/C25/C30} \end{cases}$$
(80)

Tabelle 26: Zulässige Querzuglasten inf. Stahl-, Schweiß- und Stabilitätswiderstand (Ankertyp 2)

Ankerschenkeldurchmesser		d _s =12 mm	d _s =14 mm	
zul. Querzuglast h ≤ 200 mm zul Q ₂₀		14,3 kN	22,4 kN	
zul. Querzuglast h ≤ 260 mm	zul Q ₂₆₀	10,1 kN	17,0 kN	
zul. Querzuglast h ≤ 360 mm	zul Q ₃₆₀	6,0 kN	10,5 kN	

Tabelle 27: Zulässige Querzuglasten inf. Stahl-, Schweiß- und Stabilitätswiderstand (Ankertyp 3)

Ankerschenkeldurchmesser		d _s =12 mm	d _s =14 mm	
zul. Querzuglast h ≤ 200 mm zul Q ₂₀₀		13,5 kN	18,5 kN	
zul. Querzuglast h ≤ 260 mm	zul Q ₂₆₀	13,5 kN	18,5 kN	
zul. Querzuglast h ≤ 360 mm	zul Q ₃₆₀	13,5 kN	18,5 kN	

Tabelle 28: Zulässige Querzuglasten inf. Verbund- und Ausbruchwiderstand (A-Typ 2 und 3 unverstärkt)

Ankerschenkeldurchmesser		d _s =12 mm	d _s =14 mm	
zul. Querzuglast C12/15	zul Q _{C12}	6,0 kN	6,4 kN	
zul. Querzuglast C16/20	zul Q _{C16}	7,1 kN	7,7 kN	
zul. Querzuglast C20/25	zul Q _{czo}	8,2 kN	8,9 kN	
zul. Querzuglast C25/30	zul Q _{C25}	9,7 kN	10,5 kN	
zul. Querzuglast C30/37	zul Q _{c30}	10,8 kN	11,7 kN	

Tabelle 29: Zulässige Querzuglasten inf. Verbund- und Ausbruchwiderstand (A-Typ 2 und 3 mit RHB)

Ankerschenkeldurchmesser		d _s =12 mm	d _s =14 mm	
zul. Querzuglast C12/15	zul Q _{C12}	11,3 kN	12,2 kN	
zul. Querzuglast C16/20	zul Q _{C16}	13,4 kN	14,5 kN	
zul. Querzuglast C20/25	zul Q _{c20}	15,5 kN	16,8 kN	
zul. Querzuglast C25/30	zul Q _{C25}	18,4 kN	19,8 kN	
zul. Querzuglast C30/37	zul Q _{C30}	20,5 kN	22,1 kN	

10 BERECHNUNGSBEISPIEL

10.1 ALLGEMEINES

Im Folgenden werden zur Verifizierung der Tabellenwerte in Abschnitt 9 und in Anlage A die Tragfähigkeitswerte eines Doppelwandankers exemplarisch berechnet.

10.2 EINGANGSWERTE

Den Berechnungen liegen die folgenden Anker- und Materialparameter zu Grunde:

Doppelwandanker Ankertyp2, Ø14

h	=	26,0 cm	Breite der Doppelwandanker
C _{nam}	=	20 mm	Betondeckung nach außen über Querbewehrg.
C _{min}	=	10 mm	Betondeckung nach innen über Ankerschenkel

Betonfestigkeitsklasse C16/20

fck	= 16,0 N/mm ²	charak. Wert der Betondruckfestigkeit
$f_{\rm ctm}$	= 1,90 N/mm ²	Mittelwert der Betonzugfestigkeit
f _{ctk} *	$= 0.85 \cdot f_{ctm}$	
	= 1,615 N/mm ²	erhöhter Quantilwert der Betonzugfestigkeit

Betonstahl BSt 500S

10.3 ELEMENTTRAGFÄHIGKEITEN

10.3.1 Stahltragfähigkeit

$$Z_{Rk} = d_s^{~2}/4 \cdot \pi \cdot f_{yk} = 14^2 \, / \, 4 \cdot \pi \cdot 500 \cdot 10^{\cdot 3} = 77,0 \; kN$$

10.3.2 Widerstand gegen Stabilitätsversagen

$$\begin{split} \underline{\lambda}_k &= \lambda_k \, / \, \lambda_a = 4 \, \beta \, \, h \, / \, d \, / \, (20 \, \pi) = 4 \cdot 1,0 \cdot 260 \, / \, 14 \, / \, (20 \, \pi) = 1,182 \\ k &= 0,5 \, (1 \, + \, 0,49 \, (1,182 \, - \, 0,2) \, + \, 1,182^2) = 1,440 \\ \kappa &= 1 \, / \, (\, 1,440 \, + \, (1,440^2 \, - 1,182^2)^{0.5}) = 0,44 \, \leq \, 1,00 \\ D_{Rk,k260} &= \kappa \, Z_{,Rk} = 0,44 \cdot 77,0 = 34,0 \, \, kN \end{split}$$

$$\begin{split} D_{Rk,w} &= \alpha_w \cdot a_w \cdot l_w \cdot f_{yk} & \text{mit } \alpha_w = 0.80, \ a_w = 4 \text{ mm, } \ l_w = 28 \text{ mm} \\ D_{Rk,w} &= 0.80 \cdot 4 \cdot 28 \cdot 500 \cdot 10^{-3} = 44.8 \text{ kN} \end{split}$$

10.3.4 Verbundtragfähigkeit

$$\begin{split} \alpha_b &= \frac{1}{2} \left(1 + c_{min} / \, d_s \right) = \frac{1}{2} \left(1 + \frac{10}{14} \right) = 0.857 \leq 1.00 \\ f_{bk} &= 2.25 \, f_{cdk^*} = 2.25 \cdot 1.615 = 3.634 \, N/mm^2 \\ I_{b,maBg} &= 365 \, mm \\ A_{Rk} &= \alpha_b \cdot \pi \cdot d_s \cdot I_{b,maBg} \cdot f_{bk} = 0.857 \cdot \pi \cdot 14 \cdot 365 \cdot 3.634 \cdot 10^3 \\ A_{Rk} &= 50.0 \, kN \end{split}$$

10.3.5 Tragfähigkeit auf Horizontallasten

$$\begin{aligned} h_c &= 2 \ c_{\text{innen}} + d_s = 2 \cdot 10 + 14 = 34 \ \text{mm} \\ A_c &= I_o \cdot h_c = 80 \cdot 34 \ \text{mm} = 2720 \ \text{mm}^2 \\ k_c &= 4 / \left(1 - d_S / h_c\right) \cdot 10^3 = 4 / \left(1 - 14 / 34\right) \cdot 10^3 = 6.8 \cdot 10^3 \\ C_{Rk} &= k_c \cdot A_c \cdot f_{crk^*} = 6.8 \cdot 10^3 \cdot 2720 \cdot 1.615 = 29.9 \ \text{kN} \end{aligned}$$

10.3.6 Tragfähigkeit auf Querlasten

Quertragfähigkeit der unverstärkten Ausführung:

$$B_{Rk} = f_Q (c_{nom} / c_{nom}^{0}) d_S^{0.5} \cdot f_{ctk^*}$$
 mit $f_Q = 3.8$, $c_{nom}^{0} = 20$ mm $B_{Rk} = 3.80 (20 / 20) 14^{0.5} \cdot 1.615 = 23.0 kN$

Quertragfähigkeit der verstärkten Ausführung mit Rückhängebewehrung Ø10:

$$B_{Rk,R} = B_{Rk} + f_{QR} \cdot d_S^{0.5} \cdot f_{ctk}$$
 mit $f_{QR} = 3,4$
 $B_{Rk,R} = 23,0 + 3,4 \cdot 14^{0.5} \cdot 1,615 = 43,5 \text{ kN}$

10.4 ANKERTRAGFÄHIGKEITEN

10.4.1 Tragfähigkeit auf zentrische Zuglasten

$$\begin{split} N_{\text{Rik}} &= \text{min} \quad \begin{cases} &2 \, A_{\text{Rik}} \\ &2 \, \sin \, 60^{\circ} \cdot Z_{\text{Rik}} \\ &2 \, \tan \, 60^{\circ} \cdot D_{\text{Rik,K260}} \\ &2 \, \tan \, 60^{\circ} \cdot D_{\text{Rik,W}} \end{cases} \\ N_{\text{Rik}} &= \text{min} \quad \begin{cases} &2 \, A_{\text{Rik}} \\ &2 \, \tan \, 60^{\circ} \cdot D_{\text{Rik,W}} \\ &2 \, \sin \, 60^{\circ} \cdot 77,0 = 133,4 \, \text{kN} \\ &2 \, \tan \, 60^{\circ} \cdot 34,0 = 117,8 \\ &2 \, \tan \, 60^{\circ} \cdot 44,8 = 155,2 \, \text{kN} \end{cases} \end{split}$$

$$N_{Rk} = 100,0 \text{ kN}$$

zul N =
$$N_{Rk} / \gamma = 100,0 / 3,0 = 33,3 \text{ kN}$$

10.4.2 Tragfähigkeit auf Schrägzuglasten

$$S_{Rk} = min \quad \begin{cases} 2\sqrt{2} \; A_{Rk} \\ 2 \sin 60^\circ \cdot Z_{Rk} \\ 2 \tan 60^\circ \cdot D_{Rk,K} \\ 2 \tan 60^\circ \cdot D_{Rk,W} \\ 2\sqrt{2} \; C_{Rk} \end{cases}$$

$$S_{Rk} = min \begin{cases} 2\sqrt{2} \cdot 50,0 = 141,4 \text{ kN} \\ 2 \sin 60^{\circ} \cdot 77,0 = 133,4 \text{ kN} \\ 2 \tan 60^{\circ} \cdot 34,0 = 117,8 \text{ kN} \\ 2 \tan 60^{\circ} \cdot 44,8 = 155,2 \text{ kN} \\ 2\sqrt{2} \cdot 29,9 = 84,6 \text{ kN} \end{cases}$$

$$S_{Rk} = 84,6 \text{ kN}$$

zul S =
$$S_{Rk} / \gamma = 84,6 / 3,0 = 28,2 \text{ kN}$$

10.4.3 Tragfähigkeit auf Querzuglasten

Querzugtragfähigkeit der unverstärkten Ausführung:

$$Q_{Rk} = min \begin{cases} 2 A_{Rk} \\ B_{Rk} \\ \sqrt{2} Z_{Rk} \\ 1,5 D_{Rk,K} \\ 1,5 D_{Rk,W} \end{cases}$$

$$Q_{Rk} = min \begin{cases} 2 \cdot 50,0 = 100,0 \text{ kN} \\ 23,0 \text{ kN} \\ \sqrt{2} \cdot 77,0 = 108,9 \text{ kN} \\ 1,5 \cdot 34,0 = 51,0 \text{ kN} \\ 1,5 \cdot 44,8 = 67,2 \text{ kN} \end{cases}$$

$$Q_{Rk} = 23,0 \text{ kN}$$

zul Q =
$$Q_{Rk}/\gamma = 23.0/3.0 = 7.7 \text{ kN}$$

Querzugtragfähigkeit der verstärkten Ausführung mit Rückhängebewehrung Ø10:

$$Q_{Rk,R} = min \begin{cases} 2 A_{Rk} \\ B_{Rk,R} \\ \sqrt{2} Z_{Rk} \\ 1,5 D_{Rk,K} \\ 1,5 D_{Rk,W} \end{cases}$$

$$Q_{Rk,R} = min \left\{ \begin{array}{l} 2 \cdot 50,0 = 100,0 \text{ kN} \\ 43,5 \text{ kN} \\ \sqrt{2} \cdot 77,0 = 108,9 \text{ kN} \\ 1,5 \cdot 34,0 = 51,0 \text{ kN} \\ 1,5 \cdot 44,8 = 67,2 \text{ kN} \end{array} \right.$$

$$Q_{Rk,R} = 43,5 \text{ kN}$$

zul
$$Q_R = Q_{Rk,R} / \gamma = 43,5 / 3,0 = 14,5 \text{ kN}$$

11 AUSWERTUNG DER AUSZIEHVERSUCHE

11.1 ALLGEMEINES

Mit Hilfe der Ausziehversuche wurden die in Abschnitt 7 und 9 bestimmten Versagensarten und gewählten statischen Modelle kontrolliert. Die Formeln für die Tragfähigkeiten wurden anhand der Versagenslasten der Versuche kalibriert.

Für die Ausziehversuche wurden Doppelwandanker in zweischalige Betonkörper einbetoniert und bis zum Bruch belastet. Die Versuchsreihen umfassten insgesamt 20 Versuche. Es wurden neun Versuche mit zentrischer Zugbelastung drei mit Schrägzugbelastung und acht mit Querzugbeanspruchung durchgeführt.

Die in den Ausziehversuchen erzielten Bruch- oder Maximallasten wurden mit den Werten verglichen, die sich aus den Bemessungsgleichungen ergeben. In den Bemessungsgleichungen wurden der Sicherheitsbeiwert zu $\gamma=1,0$ gesetzt, um die Versuche auf Bruchlastniveau einschätzen zu können.

11.1.1 Materialfestigkeiten

Die Materialfestigkeiten für die Auswertung der Versuche werden im Folgenden bestimmt.

Stahl

Im Rahmen der Versuche wurde die Streckgrenze der Doppelwandankerstäbe angenommen zu:

$$f_{vk} = 500 \text{ N/mm}^2$$

Beton

Das Institut für Massivbau an der RWTH Aachen (IMB) hat die Betonwürfeldruckfestigkeit und die Spaltzugfestigkeit des Betons am Tag des jeweiligen Ausziehversuchs ermittelt. Die Druckfestigkeit $f_{c,150}$ wurde i.d.R. aus drei Betonwürfeln mit 150 mm Kantenlänge 'die Spaltzugfestigkeit $f_{ct,sp}$ i.d.R. aus zwei Zylindern (I/d=300/150 mm) ermittelt. Die für die Bemessung erforderlichen Betonkennwerte wurden aus diesen Messdaten rechnerisch abgeleitet:

zentrische Zugfestigkeit
$$f_{ct,z} = 0,90 f_{ct,sp}$$
 (81)

Verbundspannung
$$f_b = 2,25 f_{ct,z}$$

Die Verbundspannung wurde als Mittelwert der aus den gemessen Festigkeiten beider Betonschalen ausgewertet.

11.1.2 Versuchslasten

Bei allen Versuchskörpern wurde die Bruchlast, bzw. Maximallast F_u und die zugehörigen Verschiebung u_u bestimmt. Bei den Schrägzug- und Querzugversuchen wird zusätzlich die Grenzlast der Gebrauchstauglichkeit F_g mit der zugehörigen Verschiebung u_g bestimmt, bis zu der keine erkennbare Rissbildung an den Oberflächen der Betonschalen auftrat.

11.1.3 Auswertung

Die Auswertung der Ausziehversuche erfolgte über eine Gegenüberstellung der tatsächlichen Bruch- und Grenzlasten zu den theoretischen, charakteristischen Versagenslasten. Dabei werden folgende Grundsätze eingehalten:

- Die maßgebende Versagensart ließ sich aus den formell errechneten Bruchwiderständen (vgl. Abschnitt 7, 9) eindeutig bestimmen.
- Die im Versuch erzielten Bruchlasten lagen in der Größenordnung der formell errechneten Bruchwiderstände.
- Die Grenzlast der Gebrauchstauglichkeit F_g lag oberhalb des zulässigen Lastniveaus (zul $F = F_{Bk}/\gamma = 3,0$).

Die Nachweise wurden über den Sicherheitsabstand η geführt.

Sicherheitsabstand Bruch
$$\eta_u = F_{u, Versuch} / min F_{Rk} \ge 1,00$$
 (83)

Sicherheitsabstand Gebrauchstauglichkeit
$$\eta_G = F_{G.Versuch} / zul F \ge 1,00$$
 (84)

Die Versuche mit dem Ankertyp 2 ungerippt werden nicht ausgewertet.

11.2 ZENTRISCHE ZUGVERSUCHE

Maßgebend für die Versuche ist die Verbundtragfähigkeit der Ankerschenkel und die Knicktragfähigkeit der Querstrebe.

Die Ankerschenkellänge betrug I_b = 38 cm.

Die Knicklasten betragen für eine Ankerbreite von h<260 mm: $N_{Rk,k,260} = 118$ kN (Ø14)

 $N_{Rkk260} = 351 \text{ kN } (\emptyset 20)$

Tabelle 30 Auswertung der zentrischen Zugversuche an gerippten Doppelwandankern

	f _{ct,sp} Schale1	rechn. Verbund- spannung	Verbund- tragfähigkeit	Knick- tragfähigkei	
Versuchsnr.	f _{ct,sp} Schale2	fb	F _{Rk,b}	F _{Rick}	
	[N/mm²]	[N/mm²]	[kN]	[kN]	
DW2-14gr-Z 1		3,48	116,4	118,0	
DW2-14gr-Z 2	1,92 1,52				
DW2-14gr-Z 3					
DW3-14gr-Z 1					
DW3-14gr-Z 2	2,19	4,43	148,2	351,0	
DW3-14gr-Z 3					

	Bruchlast / Max.Last		Faktor
Versuchsnr.	Fu	Versagensart	ηυ
	[kN]		[kN]
DW2-14gr-Z 1	105,0	kein Versagen	
DW2-14gr-Z 2	104,9	kein Versagen	1
DW2-14gr-Z 3	96,7	kein Versagen	
DW3-14gr-Z 1	102,1	kein Versagen	
DW3-14gr-Z 2	100,6	kein Versagen	-
DW3-14gr-Z 3	100,6	kein Versagen	

11.3 SCHRÄGZUGVERSUCHE

Maßgebend für die Versuche ist die Verbundtragfähigkeit der Ankerschenkel und die Knicktragfähigkeit der Querstrebe. Die Grenz- und Bruchlasten werden für die Auswertung auf eine Ankerlast bei einer angenommen Spreizung des Lastgehänges zu Beginn des Versuchs von 100° umgerechnet:

$$S_U = S_{U,total} / (2 \cdot \cos 100^{\circ}/2)$$

Die Ankerschenkellänge betrug l_b = 38 cm.

Die Knicklasten betragen für eine Ankerbreite von h<260 mm: $N_{Rk,k,260}=118$ kN (Ø14) $N_{Rk,k,260}=351$ kN (Ø20)

Tabelle 31 Auswertung der Schrägzugversuche an gerippten Doppelwandankern

	f _{ct,sp} Schale1	rechn. Verbund- spannung	Verbund- tragfähigkeit	Knick- tragfähigkeit	
Versuchsnr.	f _{ct,sp} Schale2	f _b	F _{Rk,b}	FRKK	
	[N/mm ²]	[N/mm²]	[kN]	[kN]	
DW2-14gr-Qs 1	2,53	5,12	171,3	118,0	
DW3-14gr-Qs 3	2,20 2,90	5,16	172,6	351,0	

	Grenzlast	Bruchlast / Max.Last	Faktor	Faktor
Versuchsnr.	F _G	Fu	η _G	ηυ
	[kN]	[kN]		
DW2-14gr-Qs 1	116,7	119,0	2,97	1,01
DW3-14gr-Qs 3	120,1	155,8	2,09	0,90

11.4 QUERZUGVERSUCHE UNVERSTÄRKTE ANKER

Maßgebend für die Versuche ist die Ausbruchtragfähigkeit der Anker und die Knicktragfähigkeit der Querstreben.

Die Knicklasten betragen für eine Ankerbreite von h<260 mm: $Q_{Rk,k,260} = 30,3$ kN (Ø12)

 $Q_{RK,k,260} = 51,0 \text{ kN } (Ø14)$

Q_{Rkk,260} = 78,3 kN (Ø16)

Q_{Rk,k,260} = 152 kN (Ø20)

Tabelle 32 Auswertung der Querzugversuche an gerippten, unverstärkten Doppelwandankern

	fa	f _{ct,sp} Schale1	f _{ctm}	Ausbruch- Tragfähigkeit	Knick- Tragfähigkeit
Bezeichnung		f _{ct,sp} Schale2		F _{Rk,a}	F _{Rk,k}
	[N/mm²]	[N/mm ²]	[N/mm²]	[kN]	[kN]
DW2-12-Qp				18,5	30,3
DW2-14-Qp	7	1,56	4.10	20,0	51,0
DW2-16-Qp	3,80	1,56	1,40	21,3	78,3
DW2-20-Qp				23,9	152,0

	Grenzlast	Bruchlast / Max.Last	Faktor	Faktor
Bezeichnung	F _G F _U		η _G	ηυ
	[kN]	[kN]		
DW2-12-Qp	15,8	18,5	2,56	1,00
DW2-14-Qp	17,0	20,9	2,55	1,05
DW2-16-Qp	22,4	23,0	3,15	1,08
DW2-20-Qp	22,6	23,9	2,84	1,00

11.5 QUERZUGVERSUCHE ANKER MIT RÜCKHÄNGEBEWEHRUNG

Maßgebend für die Versuche ist die Ausbruchtragfähigkeit der Anker und die Knicktragfähigkeit der Querstreben.

Die Knicklasten betragen für eine Ankerbreite von h<260 mm: $Q_{Rk,k,260} = 30,3$ kN (Ø12)

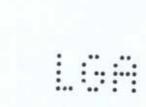
 $Q_{Rk,k,280} = 51,0 \text{ kN } (Ø14)$

 $Q_{Rkk,260} = 78,3 \text{ kN } (Ø16)$

 $Q_{Rk,k,260} = 152 \text{ kN } (Ø20)$

Tabelle 33 Auswertung der Querzugversuche an gerippten Ankern mit Rückhängebewehrung

	fQ	f _{ct,sp} Schale1	f _{otm}	Ausbruch- Tragfähigkeit	Knick- Tragfähigkeit
Bezeichnung		f _{ct,sp} Schale2		F _{Rk,a}	F _{RK,k}
	[N/mm²]	[N/mm ²]	[N/mm ²]	[kN]	[kN]
DW2-12-RHB-Qp	3,40		1,40	35,0	30,3
DW2-14-RHB-Qp		1,56		37,8	51,0
DW2-16-RHB-Qp		1,56		40,4	78,3
DW2-20-RHB-Qp				45,2	152,0


	Grenzlast	Bruchlast / Max.Last	Faktor	Faktor
Bezeichnung	F _G	Fu	η _G	ηυ
	[kN]	[kN]		
DW2-12-RHB-Qp	23,4	35,6	2,32	1,17
DW2-14-RHB-Qp	30,6	36,4	2,43	0,96
DW2-16-RHB-Qp	39,9	42,0	2,96	1,04
DW2-20-RHB-Qp	41,0	48,1	2,72	1,06

Aachen, den 31. Oktober 2008

Dr.-Ing. N. Kerkeni

Dipl.-Ing. C. Bergholz

